963 resultados para AUGER ELECTRON SPECTROSCOPY
Resumo:
The electron collection efficiency in dye-sensitized solar cells (DSCs) is usually related to the electron diffusion length, L = (Dτ)1/2, where D is the diffusion coefficient of mobile electrons and τ is their lifetime, which is determined by electron transfer to the redox electrolyte. Analysis of incident photon-to-current efficiency (IPCE) spectra for front and rear illumination consistently gives smaller values of L than those derived from small amplitude methods. We show that the IPCE analysis is incorrect if recombination is not first-order in free electron concentration, and we demonstrate that the intensity dependence of the apparent L derived by first-order analysis of IPCE measurements and the voltage dependence of L derived from perturbation experiments can be fitted using the same reaction order, γ ≈ 0.8. The new analysis presented in this letter resolves the controversy over why L values derived from small amplitude methods are larger than those obtained from IPCE data.
Resumo:
Microstructural (fabric, forces and composition) changes due to hydrocarbon contamination in a clay soil were studied using Scanning Electron Microscope (micro-fabric analysis), Atomic Force Microscope (forces measurement) and sedimentation bench test (particle size measurements). The non-polluted and polluted glacial till from north-eastern Poland (area of a fuel terminal) were used for the study. Electrostatic repelling forces for the polluted sample were much lower than for the non-polluted sample. In comparison to non-polluted sample, the polluted sample exhibited lower electric charge, attractive forces on approach and strong adhesion on retrieve. The results of the sedimentation tests indicate that clay particles form larger aggregates and settle out of the suspension rapidly in diesel oil. In non-polluted soil, the fabric is strongly aggregated – densely packed, dominate the face-to-face and edge-to-edge types of contacts, clay film tightly adheres to the surface of larger grains and interparticle pores are more common. In polluted soil, the clay matrix is less aggregated – loosely packed, dominate the edge-to-face types of contacts and inter-micro-aggregate pores are more frequent. Substantial differences were observed in the morphometric and geometrical parameters of pore space. The polluted soil micro-fabric proved to be more isotropic and less oriented than in non-polluted soil. The polluted soil, in which electrostatic forces were suppressed by hydrocarbon interaction, displays more open porosity and larger voids than non-polluted soil, which is characterized by occurrence of the strong electrostatic interaction between clay particles.
Resumo:
Near infrared (NIR), infrared (IR) spectroscopy and X-ray diffraction (XRD) have been applied to halotrichites of the formula FeAl2(SO4)4∙22H2O and Fe2+Fe23+(SO4)4∙22H2O. Comparison of the halotrichites and their starting materials has been used to give a better understanding of the bonding involved in these types of minerals. The vibrational spectroscopy data has shown that Fe2+ oxidises during the formation of halotrichite, no preventative measures were implemented to prevent oxidation, and this has been clearly shown by the position and broadness of electronic bands of transition metals in the NIR spectra (12500 to 7500 cm-1). It is apparent from this region that Fe3+ substitutes for Al3+ in the synthesis of halotrichite. Due to the oxidation of Fe2+ to Fe3+ the halotrichite sample contains a small portion of bilinite. This has been confirmed by XRD, peaks at 9 and 14° 2θ were observed in the halotrichite sample and are identical to the XRD pattern obtained for bilinite. Substitution of aluminium for Fe3+ has resulted in significant changes in the overall infrared and NIR spectral profiles. However, the lower wavenumber regions of the NIR spectra have very similar spectral profiles, which indicate a similar structure to halotrichite has formed for bilinite. This work has shown that iron halotrichites can be synthesised and characterised by infrared and NIR spectroscopy.
Resumo:
The oriented single crystal Raman spectrum of leiteite has been obtained and the spectra related to the structure of the mineral. The intensities of the observed bands vary according to orientation allowing them to be assigned to either Ag or Bg modes. Ag bands are generally the most intense in the CAAC spectrum, followed by ACCA, CBBC, and ABBA whereas Bg bands are generally the most intense in the CBAC followed by ABCA. The CAAC and ACCA spectra are identical, as are those obtained in the CBBC and ABBA orientations. Both cross-polarised spectra are identical. Band assignments were made with respect to bridging and non-bridging As-O bonds.
Resumo:
Human hair fibres are ubiquitous in nature and are found frequently at crime scenes often as a result of exchange between the perpetrator, victim and/or the surroundings according to Locard's Principle. Therefore, hair fibre evidence can provide important information for crime investigation. For human hair evidence, the current forensic methods of analysis rely on comparisons of either hair morphology by microscopic examination or nuclear and mitochondrial DNA analyses. Unfortunately in some instances the utilisation of microscopy and DNA analyses are difficult and often not feasible. This dissertation is arguably the first comprehensive investigation aimed to compare, classify and identify the single human scalp hair fibres with the aid of FTIR-ATR spectroscopy in a forensic context. Spectra were collected from the hair of 66 subjects of Asian, Caucasian and African (i.e. African-type). The fibres ranged from untreated to variously mildly and heavily cosmetically treated hairs. The collected spectra reflected the physical and chemical nature of a hair from the near-surface particularly, the cuticle layer. In total, 550 spectra were acquired and processed to construct a relatively large database. To assist with the interpretation of the complex spectra from various types of human hair, Derivative Spectroscopy and Chemometric methods such as Principal Component Analysis (PCA), Fuzzy Clustering (FC) and Multi-Criteria Decision Making (MCDM) program; Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Geometrical Analysis for Interactive Aid (GAIA); were utilised. FTIR-ATR spectroscopy had two important advantages over to previous methods: (i) sample throughput and spectral collection were significantly improved (no physical flattening or microscope manipulations), and (ii) given the recent advances in FTIR-ATR instrument portability, there is real potential to transfer this work.s findings seamlessly to on-field applications. The "raw" spectra, spectral subtractions and second derivative spectra were compared to demonstrate the subtle differences in human hair. SEM images were used as corroborative evidence to demonstrate the surface topography of hair. It indicated that the condition of the cuticle surface could be of three types: untreated, mildly treated and treated hair. Extensive studies of potential spectral band regions responsible for matching and discrimination of various types of hair samples suggested the 1690-1500 cm-1 IR spectral region was to be preferred in comparison with the commonly used 1750-800 cm-1. The principal reason was the presence of the highly variable spectral profiles of cystine oxidation products (1200-1000 cm-1), which contributed significantly to spectral scatter and hence, poor hair sample matching. In the preferred 1690-1500 cm-1 region, conformational changes in the keratin protein attributed to the α-helical to β-sheet transitions in the Amide I and Amide II vibrations and played a significant role in matching and discrimination of the spectra and hence, the hair fibre samples. For gender comparison, the Amide II band is significant for differentiation. The results illustrated that the male hair spectra exhibit a more intense β-sheet vibration in the Amide II band at approximately 1511 cm-1 whilst the female hair spectra displayed more intense α-helical vibration at 1520-1515cm-1. In terms of chemical composition, female hair spectra exhibit greater intensity of the amino acid tryptophan (1554 cm-1), aspartic and glutamic acid (1577 cm-1). It was also observed that for the separation of samples based on racial differences, untreated Caucasian hair was discriminated from Asian hair as a result of having higher levels of the amino acid cystine and cysteic acid. However, when mildly or chemically treated, Asian and Caucasian hair fibres are similar, whereas African-type hair fibres are different. In terms of the investigation's novel contribution to the field of forensic science, it has allowed for the development of a novel, multifaceted, methodical protocol where previously none had existed. The protocol is a systematic method to rapidly investigate unknown or questioned single human hair FTIR-ATR spectra from different genders and racial origin, including fibres of different cosmetic treatments. Unknown or questioned spectra are first separated on the basis of chemical treatment i.e. untreated, mildly treated or chemically treated, genders, and racial origin i.e. Asian, Caucasian and African-type. The methodology has the potential to complement the current forensic analysis methods of fibre evidence (i.e. Microscopy and DNA), providing information on the morphological, genetic and structural levels.
Resumo:
Insight into the unique structure of hydrotalcites (HTs) has been obtained using Raman spectroscopy. Gallium-contg. HTs of formula Zn4 Ga2(CO3)(OH)12 · xH2O (2:1 ZnGa-HT), Zn6 Ga2(CO3)(OH)16 · xH2O (3:1 ZnGa-HT) and Zn8 Ga2(CO3)(OH)18 · xH2O (4:1 ZnGa-HT) have been successfully synthesized and characterised by X-ray diffraction (XRD) and Raman spectroscopy. The d(003) spacing varies from 7.62 Å for the 2:1 ZnGa-HT to 7.64 Å for the 3:1 ZnGa-HT. The 4:1 ZnGa-HT showed a decrease in the d(003) spacing, compared to the 2:1 and 3:1 compds. Raman spectroscopy complemented with selected IR data has been used to characterize the synthesized gallium-contg. HTs. Raman bands obsd. at around 1050, 1060 and 1067 cm-1 are attributed to the sym. stretching modes of the (CO32-) units. Multiple ν3 (CO32-) antisym. stretching modes are found between 1350 and 1520 cm-1, confirming multiple carbonate species in the HT structure. The splitting of this mode indicates that the carbonate anion is in a perturbed state. Raman bands obsd. at 710 and 717 cm-1 and assigned to the ν4 (CO32-) modes support the concept of multiple carbonate species in the interlayer.
Resumo:
The single crystal Raman spectra of minerals brandholzite and bottinoite, formula M[Sb(OH)6]2•6H2O, where M is Mg+2 and Ni+2 respectively, and the non-aligned Raman spectrum of mopungite, formula Na[Sb(OH)6], are presented for the first time. The mixed metal minerals comprise of alternating layers of [Sb(OH)6]-1 octahedra and mixed [M(H2O)6]+2 / [Sb(OH)6]-1 octahedra. Mopungite comprises hydrogen bonded layers of [Sb(OH)6]-1 octahedra linked within the layer by Na+ ions. The spectra of the three minerals were dominated by the Sb-O symmetric stretch of the [Sb(OH)6]-1 octahedron, which occurs at approximately 620 cm-1. The Raman spectrum of mopungite showed many similarities to spectra of the di-octahedral minerals informing the view that the Sb octahedra gave rise to most of the Raman bands observed, particularly below 1200 cm-1. Assignments have been proposed based on the spectral comparison between the minerals, prior literature and density field theory calculations of the vibrational spectra of the free [Sb(OH)6]-1 and [M(H2O)6]+2 octahedra by a model chemistry of B3LYP/6-31G(d) and lanl2dz for the Sb atom. The single crystal data spectra showed good mode separation, allowing the majority of the bands to be assigned a symmetry species of A or E.
Resumo:
The single crystal Raman spectra of natural mineral schafarzikite FeSb2O4 from the Pernek locality of the Slovak Republic are presented for the first time. Raman spectra of natural mineral apuanite Fe2+Fe43+Sb4O12S, originating from the Apuan Alps in Italy, as well as spectra of synthetic ZnSb2O4 and arsenite mineral trippkeite CuAs2O4 are also presented for the first time. The spectra of the antimonite minerals are characterized by a strong band in the region 660 – 680 cm-1 with shoulders on either side, and a band of medium intensity near 300 cm-1. The spectrum of the arsenite mineral is characterized by a medium band near 780 cm-1 with a shoulder on the high wavenumber side and a strong band at 370 cm-1. Assignments are proposed based on the spectral comparison between the compounds, symmetry modes of the bands and prior literature. The single crystal spectra of schafarzikite showed good mode separation, allowing bands to be assigned a symmetry species of A1g, B1g, B2g or Eg.
Resumo:
The importance of NIR spectroscopy has been successfully demonstrated in the present study of smithsonite minerals. The fundamental observations in the NIR spectra, in addition to the anions of OH- and CO32- are Fe and Cu in terms of cation content. These ions exhibit broad absorption bands ranging from 13000 to 7000cm-1 (0.77 to 1.43 µm). One broad diagnostic absorption feature centred at 9000 cm-1 (1.11 µm) is the result of ferrous ion spin allowed transition, (5T2g ® 5Eg). The splitting of this band (>1200 cm-1) is a common feature in all the spectra of the studied samples. The light green coloured sample from Namibia show two Cu(II) bands in NIR at 8050 and 10310 cm-1 (1.24 and 0.97 µm) are assigned to 2B1g ® 2A1g and 2B1g ® 2B2g transitions. The effects of structural cations substitution (Ca2+, Fe2+, Cu2+, Cd2+ and Zn2+) on band shifts in the electronic spectra1 region of 11000-7500 cm-1 (0.91-1.33 µm) and vibrational modes of OH- and CO32- anions in 7300 to 4000 cm-1 (1.37-2.50 µm) region were used to distinguish between the smithsonites.
Resumo:
Infrared spectroscopy has been used to study the adsorption of paranitrophenol on mono, di and tri alkyl surfactant intercalated montmorillonite. Organoclays were obtained by the cationic exchange of mono, di and tri alkyl chain surfactants for sodium ions [hexadecyltrimethylammonium bromide (HDTMAB), dimethyldioctadecylammonium bromide (DDOAB), methyltrioctadecylammonium bromide (MTOAB)] in an aqueous solution with Na-montmorillonite. Upon formation of the organoclay, the properties change from strongly hydrophilic to strongly hydrophobic. This change in surface properties is observed by a decrease in intensity of the OH stretching vibrations assigned to water in the cation hydration sphere of the montmorillonite. As the cation is replaced by the surfactant molecules the paranitrophenol replaces the surfactant molecules in the clay interlayer. Bands attributed to CH stretching and bending vibrations change for the surfactant intercalated montmorillonite. Strong changes occur in the HCH deformation modes of the methyl groups of the surfactant. These changes are attributed to the methyl groups locking into the siloxane surface of the montmorillonite. Such a concept is supported by changes in the SiO stretching bands of the montmorillonite siloxane surface. This study demonstrates that paranitrophenol will penetrate into the untreated clay interlayer and replace the intercalated surfactant in surfactant modified clay, resulting in the change of the arrangement of the intercalated surfactant.
Resumo:
Spatially offset Raman spectroscopy (SORS) is a powerful new technique for the non-invasive detection and identification of concealed substances and drugs. Here, we demonstrate the SORS technique in several scenarios that are relevant to customs screening, postal screening, drug detection and forensics applications. The examples include analysis of a multi-layered postal package to identify a concealed substance; identification of an antibiotic capsule inside its plastic blister pack; analysis of an envelope containing a powder; and identification of a drug dissolved in a clear solvent, contained in a non-transparent plastic bottle. As well as providing practical examples of SORS, the results highlight several considerations regarding the use of SORS in the field, including the advantages of different analysis geometries and the ability to tailor instrument parameters and optics to suit different types of packages and samples. We also discuss the features and benefits of SORS in relation to existing Raman techniques, including confocal microscopy, wide area illumination and the conventional backscattered Raman spectroscopy. The results will contribute to the recognition of SORS as a promising method for the rapid, chemically-specific analysis and detection of drugs and pharmaceuticals.
Resumo:
Organoclays were synthesised through ion exchange of a single surfactant for sodium ions, and characterised by a range of method including X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). The change in surface properties of montmorillonite and organoclays intercalated with the surfactant, tetradecyltrimethylammonium bromide (TDTMA) were determined using XRD through the change in basal spacing and the expansion occurred by the adsorbed p-nitrophenol. The changes of interlayer spacing were observed in TEM. In addition, the surface measurement such as specific surface area and pore volume was measured and calculated using BET method, this suggested the loaded surfactant is highly important to determine the sorption mechanism onto organoclays. The collected results of XPS provided the chemical composition of montmorillonite and organoclays, and the high-resolution XPS spectra offered the chemical states of prepared organoclays with binding energy. Using TGA and FT-IR, the confirmation of intercalated surfactant was investigated. The collected data from various techniques enable an understanding of the changes in structure and surface properties. This study is of importance to provide mechanisms for the adsorption of organic molecules, especially in contaminated environmental sites and polluted waters.
Resumo:
Raman spectra of the uranyl containing mineral coconinoite, Fe2Al2(UO2)2(PO4)4(SO4)(OH)2•20H2O, are presented and compared with the mineral’s infrared spectra. Bands connected with (UO2)2+, (PO4)3- , (SO4)2-, (OH)- and H2O stretching and bending vibrations, are assigned. Approximate U-O bond lengths in uranyl, (UO2)2+, and O-H...O hydrogen bond lengths are calculated from the wavenumbers of the U-O stretching vibrations and (OH)- and H2O stretching vibrations, respectively, and compared with published data for similar natural and synthetic compounds.
Resumo:
Newberyite Mg(PO3OH)•3H2O is a mineral found in caves such as from Moorba cave, Jurien Bay, Western Australia, the Skipton Lava tubes (SW of Ballarat, Victoria, Australia) and in the Petrogale Cave (Madura , Eucla, Western Australia). Because these minerals contain oxyanions, hydroxyl units and water, the minerals lend themselves to spectroscopic analysis. Raman spectroscopy can investigate the complex paragenetic relationships existing between a number of ‘cave’ minerals. The intense sharp band at 982 cm-1 is assigned to the PO43- ν1 symmetric stretching mode. Low intensity Raman bands at 1152, 1263 and 1277 cm-1 are assigned to the PO43- ν3 antisymmetric stretching vibrations. Raman bands at 497 and 552 cm-1 are attributed to the PO43- ν4 bending modes. An intense Raman band for newberyite at 398 cm-1 with a shoulder band at 413 cm-1 is assigned to the PO43- ν2 bending modes. The values for the OH stretching vibrations provide hydrogen bond distances of 2.728Å (3267 cm-1), 2.781Å (3374cm-1), 2.868Å (3479 cm-1), and 2.918Å (3515 cm-1). Such hydrogen bond distances are typical of secondary minerals. Estimates of the hydrogen-bond distances have been made from the position of the OH stretching vibrations and show a wide range in both strong and weak bonds.
Resumo:
Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the mineral stercorite H(NH4)Na(PO4)·4H2O. The mineral stercorite originated from the Petrogale Cave, Madura, Eucla, Western Australia. This cave is one of many caves in the Nullarbor Plain in the South of Western Australia. These caves have been in existence for eons of time and have been dated at more than 550 million years old. The mineral is formed by the reaction of bat guano chemicals on calcite substrates. A single Raman band at 920 cm−1 defines the presence of phosphate in the mineral. Antisymmetric stretching bands are observed in the infrared spectrum at 1052, 1097, 1135 and 1173 cm−1. Raman spectroscopy shows the mineral is based upon the phosphate anion and not the hydrogen phosphate anion. Raman and infrared bands are found and assigned to PO43−, H2O, OH and NH stretching vibrations. The detection of stercorite by Raman spectroscopy shows that the mineral can be readily determined; as such the application of a portable Raman spectrometer in a ‘cave’ situation enables the detection of minerals, some of which may remain to be identified.