912 resultados para ALLERGIC INFLAMMATION
Resumo:
Depression following an acute coronary syndrome (ACS, including myocardial infarction or unstable angina) is associated with recurrent cardiovascular events, but the depressive symptoms that are cardiotoxic appear to have particular characteristics: they are 'incident' rather than being a continuation of prior depression, and they are somatic rather than cognitive in nature. We tested the hypothesis that the magnitude of inflammatory responses during the ACS would predict somatic symptoms of depression 3 weeks and 6 months later, specifically in patients without a history of depressive illness. White cell count and C-reactive protein were measured on the day after admission in 216 ACS patients. ACS was associated with very high levels of inflammation, averaging 13.23×10(9)/l and 17.06 mg/l for white cell count and C-reactive protein respectively. White cell count during ACS predicted somatic symptom intensity on the Beck Depression Inventory 3 weeks later (β=0.122, 95% C.I. 0.015-0.230, p=0.025) independently of age, sex, ethnicity, socioeconomic status, marital status, smoking, cardiac arrest during admission and clinical cardiac risk, but only in patients without a history of depression. At 6 months, white cell count during ACS was associated with elevated anxiety on the Hospital Anxiety and Depression Scale independently of covariates including anxiety measured at 3 weeks (adjusted odds ratio 1.08, 95% C.I. 1.01-1.15, p=0.022). An unpredicted relationship between white cell count during ACS and cognitive symptoms of depression at 6 months was also observed. The study provides some support for the hypothesis that the marked inflammation during ACS contributes to later depression in a subset of patients, but the evidence is not conclusive.
Resumo:
Background: Eosinophilic esophagitis (EoE) is a chronic inflammatory disease of the esophagus associated with dysphagia in adults and refractory reflux syndromes in children. Methods: Immunological and genetic approaches have been used to better understand the pathophysiology of the underlying inflammation. Results and Conclusions: Evidence has accumulated that EoE represents a T-helper (Th) 2-type inflammatory disease, in which allergens play a role in triggering the disease. The majority of the patients suffer from concurrent allergic rhinitis, asthma, and eczema, and have a history of atopy. The chronic inflammatory response in EoE is associated with tissue damage and remodeling, both of which lead to esophageal dysfunction and bolus impaction. The new insights into the pathophysiology have resulted in the development of the first pharmacological therapies of EoE.
Resumo:
Psoralen plus UVA (PUVA) is used as a very effective treatment modality for various diseases, including psoriasis and cutaneous T-cell lymphoma. PUVA-induced immune suppression and/or apoptosis are thought to be responsible for the therapeutic action. However, the molecular mechanisms by which PUVA acts are not well understood. We have previously identified platelet-activating factor (PAF), a potent phospholipid mediator, as a crucial substance triggering ultraviolet B radiation-induced immune suppression. In this study, we used PAF receptor knockout mice, a selective PAF receptor antagonist, a COX-2 inhibitor (presumably blocking downstream effects of PAF), and PAF-like molecules to test the role of PAF receptor binding in PUVA treatment. We found that activation of the PAF pathway is crucial for PUVA-induced immune suppression (as measured by suppression of delayed type hypersensitivity to Candida albicans) and that it plays a role in skin inflammation and apoptosis. Downstream of PAF, interleukin-10 was involved in PUVA-induced immune suppression but not inflammation. Better understanding of PUVA's mechanisms may offer the opportunity to dissect the therapeutic from the detrimental (ie, carcinogenic) effects and/or to develop new drugs (eg, using the PAF pathway) that act like PUVA but have fewer side effects.
Resumo:
Objectives.This study aimed to further elucidate the biobehavioral mechanisms linking dementia caregiving with an increased cardiovascular disease risk. We hypothesized that both elevated depressive symptoms and a behavioral correlate of depression, low leisure satisfaction, are associated with systemic inflammation.Method.We studied 121 elderly Alzheimer's disease caregivers who underwent 4 annual assessments for depressive symptoms, leisure satisfaction, and circulating levels of inflammatory markers. We used mixed-regression analyses controlling for sociodemographic and health-relevant covariates to examine longitudinal relationships between constructs of interest. RESULTS: There were inverse relationships between total leisure satisfaction and tumor necrosis factor-α (TNF-α; p = .047), interleukin-8 (IL-8; p < .001), and interferon-γ (IFG; p = .020) but not with IL-6 (p = .21) and C-reactive protein (p = .65). Lower enjoyment from leisure activities was related to higher levels of TNF-α (p = .045), IL-8 (p < .001), and IFG (p = .002), whereas lower frequency of leisure activities was related only to higher IL-8 levels (p = .023). Depressive symptoms were not associated with any inflammatory marker (all p values > .17). Depressive symptoms did not mediate the relationship between leisure satisfaction and inflammation.Discussion.Lower satisfaction with leisure activities is related to higher low-grade systemic inflammation. This knowledge may provide a promising way of improving cardiovascular health in dementia caregivers through behavioral activation treatments targeting low leisure satisfaction.
Resumo:
Mounting an effective response to tissue damage requires a concerted effort from a number of systems, including both the immune and nervous systems. Immune-responsive blood cells fight infection and clear debris from damaged tissues, and specialized pain receptors become hypersensitive to promote behavior that protects the damaged area while it heals. To uncover the cellular and molecular mechanisms underlying these processes, we have developed a genetically tractable invertebrate model of damage-induced inflammation and pain hypersensitivity using Drosophila larvae. To study wound-induced inflammation, we generated transgenic larvae with fluorescent epidermal cells and blood cells (hemocytes). Using live imaging, we monitored the circulatory dynamics of hemocytes and the methods by which they accumulate at epidermal wounds. We found that circulating hemocytes attach to wound sites directly from circulation, a mechanism once thought to work exclusively in species with a closed circulatory system. To study damage-induced pain hypersensitivity, we developed a “sunburn assay” and found that larvae have a lowered pain threshold (allodynia) and an exaggerated response to noxious stimuli (hyperalgesia) following UV damage. We screened for genes required for hypersensitivity in pain receptors (nociceptors), and discovered a number of novel mediators that have well conserved mammalian homologs. Together, these results help us to understand how various cell types in the immune and nervous systems both detect and respond to tissue damage.
Resumo:
Adenosine has been implicated in the pathogenesis of chronic lung diseases such as asthma and chronic obstructive pulmonary disease. In vitro studies suggest that activation of the A2B adenosine receptor (A2BAR) results in proinflammatory and profibrotic effects relevant to the progression of lung diseases; however, in vivo data supporting these observations are lacking. Adenosine deaminase-deficient (ADA-deficient) mice develop pulmonary inflammation and injury that are dependent on increased lung adenosine levels. To investigate the role of the A2BAR in vivo, ADA-deficient mice were treated with the selective A2BAR antagonist CVT-6883, and pulmonary inflammation, fibrosis, and airspace integrity were assessed. Untreated and vehicle-treated ADA-deficient mice developed pulmonary inflammation, fibrosis, and enlargement of alveolar airspaces; conversely, CVT-6883-treated ADA-deficient mice showed less pulmonary inflammation, fibrosis, and alveolar airspace enlargement. A2BAR antagonism significantly reduced elevations in proinflammatory cytokines and chemokines as well as mediators of fibrosis and airway destruction. In addition, treatment with CVT-6883 attenuated pulmonary inflammation and fibrosis in wild-type mice subjected to bleomycin-induced lung injury. These findings suggest that A2BAR signaling influences pathways critical for pulmonary inflammation and injury in vivo. Thus in chronic lung diseases associated with increased adenosine, antagonism of A2BAR-mediated responses may prove to be a beneficial therapy.
Resumo:
Chronic hepatitis occurs when effector lymphocytes are recruited to the liver from blood and retained in tissue to interact with target cells, such as hepatocytes or bile ducts (BDs). Vascular cell adhesion molecule 1 (VCAM-1; CD106), a member of the immunoglobulin superfamily, supports leukocyte adhesion by binding a4b1 integrins and is critical for the recruitment of monocytes and lymphocytes during inflammation. We detected VCAM-1 on cholangiocytes in chronic liver disease (CLD) and hypothesized that biliary expression of VCAM-1 contributes to the persistence of liver inflammation. Hence, in this study, we examined whether cholangiocyte expression of VCAM-1 promotes the survival of intrahepatic a4b1 expressing effector T cells. We examined interactions between primary human cholangiocytes and isolated intrahepatic T cells ex vivo and in vivo using the Ova-bil antigen-driven murine model of biliary inflammation. VCAM-1 was detected on BDs in CLDs (primary biliary cirrhosis, primary sclerosing cholangitis, alcoholic liver disease, and chronic hepatitis C), and human cholangiocytes expressed VCAM-1 in response to tumor necrosis factor alpha alone or in combination with CD40L or interleukin-17. Liver-derived T cells adhered to cholangiocytes in vitro by a4b1, which resulted in signaling through nuclear factor kappa B p65, protein kinase B1, and p38 mitogen-activated protein kinase phosphorylation. This led to increased mitochondrial B-cell lymphoma 2 accumulation and decreased activation of caspase 3, causing increased cell survival. We confirmed our findings in a murine model of hepatobiliary inflammation where inhibition of VCAM-1 decreased liver inflammation by reducing lymphocyte recruitment and increasing CD8 and T helper 17 CD4 Tcell survival. Conclusions: VCAM-1 expression by cholangiocytes contributes to persistent inflammation by conferring a survival signal to a4b1 expressing proinflammatory T lymphocytes in CLD.
Resumo:
BACKGROUND: Inflammatory bowel disease (IBD) and food-responsive diarrhea (FRD) are chronic enteropathies of dogs (CCE) that currently can only be differentiated by their response to treatment after exclusion of other diseases. In humans, increased urinary concentrations of leukotriene E4 (LTE4) have been associated with active IBD. OBJECTIVES: To evaluate urinary LTE4 concentrations in dogs with IBD, FRD, and healthy controls, and to assess correlation of urinary LTE4 concentrations with the canine IBD activity index (CIBDAI) scores. ANIMALS: Eighteen dogs with IBD, 19 dogs with FRD, and 23 healthy control dogs. METHODS: In this prospective study, urine was collected and CIBDAI scores were calculated in client-owned dogs with IBD and those with FRD. Quantification of LTE4 in urine was performed by liquid chromatography-tandem mass spectrometry and corrected to creatinine. RESULTS: Urinary LTE4 concentrations were highest in dogs with IBD (median 85.2 pg/mg creatinine [10th-90th percentiles 10.9-372.6]) followed by those with FRD (median 31.2 pg/mg creatinine [10th-90th percentiles 6.2-114.5]) and control dogs (median 21.1 pg/mg creatinine [10th-90th percentiles 9.1-86.5]). Urinary LTE4 concentrations were higher in dogs with IBD than in control dogs (P = .011), but no significant difference between IBD and FRD was found. No correlation was found between urinary LTE4 concentrations and CIBDAI. CONCLUSIONS AND CLINICAL IMPORTANCE: The higher urinary LTE4 concentrations in dogs with IBD suggest that cysteinyl leukotriene pathway activation might be a component of the inflammatory process in canine IBD. Furthermore, urinary LTE4 concentrations are of potential use as a marker of inflammation in dogs with CCE.
Resumo:
PURPOSE To assess ultrasmall superparamagnetic iron oxide particles (USPIO) -enhanced MR imaging for the differentiation of malignant from benign, inflammatory lesions. MATERIALS AND METHODS In this study, approved by the local animal care committee, VX2 carcinoma and intramuscular abscesses were implanted into the hind thighs of New Zealand White rabbits. MR imaging was performed pre contrast and serially for 24 h after the injection of USPIO. MR findings were compared with histopathologic results based on Prussian blue stains for the presence of iron. RESULTS Twenty-four hours after the Ferumoxtran-injection, no changes were observed in VX2 carcinomas, whereas a mean reduction of the contrast-to-noise ratio (CNR) of approximately 90% was noticed in abscesses as well as in necrotic tumors. On histopathologic examination, abscess and necrotic parts of the tumor were found to include iron-containing monocytes demonstrating that the reduction in CNR was caused by USPIO-tagged monocytes. CONCLUSION Our results prove the ability of USPIO-enhanced MRI to differentiate benign, inflammatory from malignant lesions.
Resumo:
Toll-like receptor-2 (TLR2) mediates host responses to gram-positive bacterial wall components. TLR2 function was investigated in a murine Streptococcus pneumoniae meningitis model in wild-type (wt) and TLR2-deficient (TLR2(-/-)) mice. TLR2(-/-) mice showed earlier time of death than wt mice (P<.02). Plasma interleukin-6 levels and bacterial numbers in blood and peripheral organs were similar for both strains. With ceftriaxone therapy, none of the wt but 27% of the TLR2(-/-) mice died (P<.04). Beyond 3 hours after infection, TLR2(-/-) mice had higher bacterial loads in brain than did wt mice, as assessed with luciferase-tagged S. pneumoniae by means of a Xenogen-CCD (charge-coupled device) camera. After 24 h, tumor necrosis factor activity was higher in cerebrospinal fluid of TLR2(-/-) than wt mice (P<.05) and was related to increased blood-brain barrier permeability (Evans blue staining, P<.02). In conclusion, the lack of TLR2 was associated with earlier death from meningitis, which was not due to sepsis but to reduced brain bacterial clearing, followed by increased intrathecal inflammation.
Resumo:
Matrix metalloproteinases (MMPs) are a family of Zn2+-dependent endopeptidases targeting extracellular matrix (ECM) compounds as well as a number of other proteins. Their proteolytic activity acts as an effector mechanism of tissue remodeling in physiologic and pathologic conditions, and as modulator of inflammation. In the context of neuro-inflammatory diseases, MMPs have been implicated in processes such as (a) blood-brain barrier (BBB) and blood-nerve barrier opening, (b) invasion of neural tissue by blood-derived immune cells, (c) shedding of cytokines and cytokine receptors, and (d) direct cellular damage in diseases of the peripheral and central nervous system. This review focuses on the role of MMPs in multiple sclerosis (MS) and bacterial meningitis (BM), two neuro-inflammatory diseases where current therapeutic approaches are insufficient to prevent severe disability in the majority of patients. Inhibition of enzymatic activity may prevent MMP-mediated neuronal damage due to an overactive or deviated immune response in both diseases. Downregulation of MMP release may be the molecular basis for the beneficial effect of IFN-beta and steroids in MS. Instead, synthetic MMP inhibitors offer the possibility to shut off enzymatic activity of already activated MMPs. In animal models of MS and BM, they efficiently attenuated clinical disease symptoms and prevented brain damage due to excessive metalloproteinase activity. However, the required target profile for the therapeutic use of this novel group of compounds in human disease is not yet sufficiently defined and may be different depending on the type and stage of disease. Currently available MMP inhibitors show little target-specificity within the MMP family and may lead to side-effects due to interference with physiological functions of MMPs. Results from human MS and BM indicate that only a restricted number of MMPs specific for each disease is up-regulated. MMP inhibitors with selective target profiles offer the possibility of a more efficient therapy of MS and BM and may enter clinical trials in the near future.