984 resultados para ABSOLUTE STEREOSTRUCTURES
Resumo:
The human brain is often considered to be the most cognitively capable among mammalian brains and to be much larger than expected for a mammal of our body size. Although the number of neurons is generally assumed to be a determinant of computational power, and despite the widespread quotes that the human brain contains 100 billion neurons and ten times more glial cells, the absolute number of neurons and glial cells in the human brain remains unknown. Here we determine these numbers by using the isotropic fractionator and compare them with the expected values for a human-sized primate. We find that the adult male human brain contains on average 86.1 +/- 8.1 billion NeuN-positive cells (""neurons"") and 84.6 +/- 9.8 billion NeuN-negative (""nonneuronal"") cells. With only 19% of all neurons located in the cerebral cortex, greater cortical size (representing 82% of total brain mass) in humans compared with other primates does not reflect an increased relative number of cortical neurons. The ratios between glial cells and neurons in the human brain structures are similar to those found in other primates, and their numbers of cells match those expected for a primate of human proportions. These findings challenge the common view that humans stand out from other primates in their brain composition and indicate that, with regard to numbers of neuronal and nonneuronal cells, the human brain is an isometrically scaled-up primate brain. J. Comp. Neurol. 513:532-541, 2009. (c) 2009 Wiley-Liss, Inc.
Resumo:
Background: The incidence of venous lesions following transvenous cardiac device implantation is high. Previous implantation of temporary leads ipsilateral to the permanent devices, and a depressed left ventricular ejection fraction have been associated with an increased risk of venous lesions, though the effects of preventive strategies remain controversial. This randomized trial examined the effects of warfarin in the prevention of these complications in high-risk patients. Method: Between February 2004 and September 2007, we studied 101 adults who underwent a first cardiac device implantation, and who had a left ventricular ejection fraction <= 0.40, or a temporary pacing system ipsilateral to the permanent implant, or both. After device implantation, the patients were randomly assigned to warfarin to a target international normalized ratio of 2.0-3.5, or to placebo. Clinical and laboratory evaluations were performed regularly up to 6 months postimplant. Venous lesions were detected at 6 months by digital subtraction venography. Results: Venous obstructions of various degrees were observed in 46 of the 92 patients (50.0%) who underwent venography. The frequency of venous obstructions was 60.4% in the placebo, versus 38.6% in the warfarin group (P = 0.018), corresponding to an absolute risk reduction of 22% (relative risk = 0.63; 95% confidence interval = 0.013-0.42). Conclusions: Warfarin prophylaxis lowered the frequency of venous lesions after transvenous devices implantation in high-risk patients. (PACE 2009; 32:S247-S251)
Resumo:
Our objective is to verify the modulatory effects of bromazepam on EEG theta absolute power when subjects were submitted to a visuomotor task (i.e., car driver task). Sample was composed of 14 students (9 males and 5 females), right handed, with ages varying between 23 and 42 years (mean = 32.5 +/- 9.5), absence of mental or physical impairments, no psychoactive or psychotropic substance use and no neuromuscular disorders (screened by a clinical examination). The results showed an interaction between condition and electrodes (p=0.034) in favor of F8 electrode compared with F7 in both experimental conditions (t-test; p=0.001). Additionally, main effects were observed for condition (p=0.001), period (p=0.001) and electrodes (p=0.031) in favor of F4 electrode compared with F3. In conclusion, Br 6 mg of bromazepam may interfere in sensorimotor processes in the task performance in an unpredictable scenario allowing that certain visuospatial factors were predominant. Therefore, the results may reflect that bromazepam effects influence the performance of the involved areas because of the acquisition and integration of sensory stimuli processes until the development of a motor behavior based on the same stimuli. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This study investigated the effects of bromazepam on qEEG when 14 healthy subjects were asked to perform a visuomotor task (i.e., motor vehicle driving task). The subjects were exposed to two experimental conditions: the placebo (PL) and 6 mg of bromazepam (Br 6 mg), following a randomized, double-blind design on different days. Specifically, we observe absolute power extracted from qEEG data for theta band. We expected to see a decrease in absolute theta power in the temporal and parietal areas due to the influence of bromazepam for the experimental group when compared with the placebo group. We found a main effect for the condition factor for electrodes T3, T4, P3 and P4. We also observed a main effect for the period factor for electrodes P3 and P4. We observed that the ingestion of 6 mg of bromazepam induces different patterns in theta power at the temporal and parietal sites. We concluded that 6 mg of bromazepam was an important factor in the fluctuation of the activities in the temporal and parietal areas. We then hypothesize about the specific role of this drug during the execution of a visuomotor task and within the sensorimotor integration process. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objective: In total knee arthroplasty, the minimally-invasive approach has been claimed to enable earlier rehabilitation because it spares the femoral quadriceps muscle. To check the influence of preserving the extensor apparatus during surgery, the strength of knee extension and flexion muscles was evaluated in patients submitted to total knee arthroplasty with different approaches. Materials and Methods: The values of maximum torque and total work obtained by isokinetic dynamometry six months after surgery were compared for the Minimally invasive surgery group constituted of 12 individuals submitted to total knee arthroplasty by the minimally invasive surgical approach and the Control group, constituted of eight patients submitted to total knee arthroplasty by the transquadricipital approach, between January 2005 and July 2006. Results: Statistical analysis of the absolute values for maximum torque and total work adjusted for body weights did not show differences between both groups. Conclusion: There was no difference in the extension and flexion strength of the knee muscles six months after surgery.
Resumo:
The study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when healthy subjects had to catch balls in free drop. Specific alpha absolute power changes were measured in quantitative electroencephalography (qEEG). Our hypothesis is that during the preparation of motoraction (i.e.. 2 s before the ball drops) integration occurs among the left medial frontal, left primary somatomotor and left posterior parietal cortices, showing a differentiated activity involving expectation, planning and preparedness. We contend that in right-handers, the left hemisphere takes on a dominant role for the regulation of motor behavior. The sample was composed of 23 healthy right handed subjects (13 men and 10 women), with ages varying between 25 and 40 years old (32.5 +/- 7.5), absence of mental and physical illness. The experiment consisted of a task of catching balls with the right hard in free drop. The three-way ANOVA analysis demonstrated all interaction between moment and position in left-medial frontal cortex (F3 electrode), somatomotor cortex (C3 electrode) and posterior parietal cortex (P3 electrode: p < 0.05). Summarizing, the experimental task enabled the observation of integration among frontal, central and parietal regions. This integration appears to be more predominant in expectation, planning and motor preparation.
Resumo:
The study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when healthy subjects had to catch balls in free drop; specifically through quantitative electroencephalography (qEEG) alpha absolute power changes. Our hypothesis is that during the preparation of motor action (i.e., 2 s before ball`s drop) occurred integration among left medial frontal, left primary somatomotor and left posterior parietal cortices, showing a differentiated activity involving expectation, planning and preparedness. This hypothesis supports a lateralization of motor function. Although we contend that in right-handers the left hemisphere takes on a dominant role for the regulation of motor behavior. The sample was composed of 23 healthy subjects (13 male and 10 female), right handed, with ages varying between 25 and 40 years old (32.5 +/- 7.5), absence of mental and physical illness, right handed, and do not make use of any psychoactive or psychotropic substance at the time of the study. The experiment consisted of a task of catching balls in free drop. The three-way ANOVA analysis demonstrated an interaction between moment and position in left medial frontal cortex (F3 electrode), somatomotor cortex (C3 electrode) and posterior parietal cortex (P3 electrode: p < 0.001). Summarizing, through experimental task employed, it was possible to observe integration among frontal, central and parietal regions. This integration appears to be more predominant in expectation, planning and motor preparation. In this way, it established an absolute predominance of this mechanism under the left hemisphere. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
PURPOSE: To report clinical outcomes of the treatment of ocular Demodex folliculorum with oral ivermectin. DESIGN: Noncomparative, interventional case series. METHODS: Setting. Institutional. Study Population. Twenty-four eyes of 12 patients (3 male and 9 female; mean age +/- standard deviation, 50.4 +/- 21.0 years) with refractory posterior blepharitis with the presence of D. folliculorum in lash samples were enrolled in this study. Intervention. Patients were instructed to take 1 dose of oral ivermectin (200 mu g/kg). All patients were instructed to repeat the treatment after 7 days. Main outcome measures. Tear meniscus height, Schirmer I test results, noninvasive tear film break-up time (BUT), quantification of the absolute number of D. folliculorum found in the lashes, and corneal fluorescein and rose bengal staining scores were obtained from all patients 1 day before and 28 days after treatment. RESULTS: Statistical improvement was observed in the absolute number of D. folliculorum found in the lashes after the treatment with oral ivermectin. Average values of Schirmer I test results and tear film break-up time improved statistically after the treatment of oral ivermectin. No statistical improvement was observed in average lacrimal meniscus height or value of corneal fluorescein and rose bengal staining after treatment with oral ivermectin. CONCLUSIONS: Ivermectin successfully reduced the number of D. folliculorum found in the lashes of patients with refractory blepharitis. Oral ivermectin may be very useful as a complement in the treatment of D. folliculorum infestation with ocular manifestation, especially in cases of unsuccessful treatment related to patient compliance. (Am J Ophthalmol 2011;151:1030-1034. (C) 2011 by Elsevier Inc. All rights reserved.)
Resumo:
The aim of this study was to determine whether estrogen therapy enhances postexercise muscle sympathetic nerve activity (MSNA) decrease and vasodilation, resulting in a greater postexercise hypotension. Eighteen postmenopausal women received oral estrogen therapy (ET; n = 9, 1 mg/day) or placebo (n = 9) for 6 mo. They then participated in one 45-min exercise session (cycle ergometer at 50% of oxygen uptake peak) and one 45-min control session (seated rest) in random order. Blood pressure (BP, oscillometry), heart rate (HR), MSNA (microneurography), forearm blood flow (FBF, plethysmography), and forearm vascular resistance (FVR) were measured 60 min later. FVR was calculated. Data were analyzed using a two-way ANOVA. Although postexercise physiological responses were unaltered, HR was significantly lower in the ET group than in the placebo group (59 +/- 2 vs. 71 +/- 2 beats/min, P < 0.01). In both groups, exercise produced significant decreases in systolic BP (145 +/- 3 vs. 154 +/- 3 mmHg, P = 0.01), diastolic BP (71 +/- 3 vs. 75 +/- 2 mmHg, P = 0.04), mean BP (89 +/- 2 vs. 93 +/- 2 mmHg, P = 0.02), MSNA (29 +/- 2 vs. 35 +/- 1 bursts/min, P < 0.01), and FVR (33 +/- 4 vs. 55 +/- 10 units, P = 0.01), whereas it increased FBF (2.7 +/- 0.4 vs. 1.6 +/- 0.2 ml (.) min(-1) (.) 100 ml(-1), P = 0.02) and did not change HR (64 +/- 2 vs. 65 +/- 2 beats/min, P = 0.3). Although ET did not change postexercise BP, HR, MSNA, FBF, or FVR responses, it reduced absolute HR values at baseline and after exercise.
Resumo:
Objective: To examine the changes in slow (8-10 Hz)and fast (10-12 Hz) alpha bands of EEG in three groups of subjects submitted to different amounts of functional electrostimulation (FES). Our hypothesis is that different amounts of electrostimulation may cause different patterns of activation in the sensorimotor cortex. In particular, we expect to see an increase in alpha power due to habituation effects. We examine the two bands comprised by alpha rhythm (i.e., slow and fast alpha), since these two sub-rhythms are related to distinct aspects: general energy demands and specific motor aspects, respectively. Methods: The sample was composed of 27 students, both sexes, aging between 25 and 40 years old. The subjects were randomly distributed in three groups: control (n = 9), G24 (n = 9) and G36 (n = 9). A FES equipment (Neuro Compact-2462) was used to stimulate the right index finger extension. Simultaneously, the electroencephalographic signal was acquired. We investigated the absolute power in slow and fast alpha bands in the sensorimotor cortex. Results: The G36 indicated a significant increasing in absolute power values in lower and higher alpha components, respectively, when compared with the control group. Particularly, in the following regions: pre-motor cortex and primary motor cortex. Discussion: FES seems to promote cortical adaptations that are similar to those observed when someone learns a procedural task. FES application in the G36 was more effective in promoting such neural changes. The lower and higher components of alpha rhythms behave differently in their topographical distribution during FES application. These results suggest a somatotopic organization in primary motor cortex which can be represented by the fast alpha component. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Introduction. A fundamental aspect of planning future actions is the performance and control of motor tasks. This behaviour is done through sensory-motor integration. Aim. To explain the electrophysiological mechanisms in the cortex (modifications to the alpha band) that are involved in anticipatory actions when individuals have to catch a free-falling object. Subjects and methods. The sample was made up of 20 healthy subjects of both sexes (11 males and 9 females) with ages ranging between 25 and 40 years (32.5 +/- 7.5) who were free of mental or physical diseases (previous medical history); the subjects were right-handed (Edinburgh Inventory) and were not taking any psychoactive or psychotropic substances at the time of the study. The experiment consisted in a task in which subjects had to catch freely falling objects. The experiment was made up of six blocks of 15 tests, each of which lasted 2 minutes and 30 seconds before and two seconds after each ball was dropped. Results. An interaction of the factors moment and position was only observed for the right parietooccipital cortex, in the combination of electrodes P4-O2. Conclusion. These findings suggest that the right parietooccipital cortex plays an important role in increasing expectation and swiftness in the process of preparing for a motor task.
Resumo:
The biomechanics of the sacroiliac joint makes the pelvic segment responsible for proper weight distribution between lower extremities; however, it is known to be susceptible to altered mobility. The objective of this study was to analyze baropodometric responses following thrust manipulation on subjects with sacroiliac joint restrictions. Twenty asymptomatic subjects were submitted to computerized baropodometric analysis before, after, and seven days following sacroiliac manipulation. The variables peak pressure and contact area were obtained at each of these periods as the average of absolute values of the difference between the right and left foot based on three trials. Data revealed significant reduction only in peak pressure immediately after manipulation and at follow-up when compared to pre-manipulative values (p < 0.05). Strong correlation was found between the dominant foot and the foot with greater contact area (r - 0.978), as well as between the side of joint restriction and the foot with greater contact area (r = 0.884). Weak correlation was observed between the dominant foot and the foot with greater peak pressure (r = 0.501), as well as between the side of joint restriction and the foot with greater peak pressure (r = 0.694). The results suggest that sacroiliac joint manipulation can influence peak pressure distribution between feet, but contact area does not seem to be related to the biomechanical aspects addressed in this study. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Acute acoustic trauma (AAT) is a sudden sensorineural hearing loss caused by exposure of the hearing organ to acoustic overstimulation, typically an intense sound impulse, hyperbaric oxygen therapy (HOT), which favors repair of the microcirculation, can be potentially used to treat it. Hence, this study aimed to assess the effects of HOT on guinea pigs exposed to acoustic trauma. Fifteen guinea pigs were exposed to noise in the 4-kHz range with intensity of 110 dB sound level pressure for 72 h. They were assessed by brainstem auditory evoked potential (BAEP) and by distortion product otoacoustic emission (DPOAE) before and after exposure and after HOT at 2.0 absolute atmospheres for 1 h. The cochleae were then analyzed using scanning electron microscopy (SEM). There was a statistically significant difference in the signal-to-noise ratio of the DPOAE amplitudes for the 1- to 4-kHz frequencies and the SEM findings revealed damaged outer hair cells (OHC) after exposure to noise, with recovery after HOT (p = 0.0159), which did not occur on thresholds and amplitudes to BAEP (p = 0.1593). The electrophysiological BAEP data did not demonstrate effectiveness of HOT against AAT damage. However, there was improvement of the anatomical pattern of damage detected by SEM, with a significant reduction of the number of injured cochlear OHC and their functionality detected by DPOAE.
Resumo:
1. The present study evaluated changes in autonomic control of the cardiovascular system in conscious rats following blockade of endothelin (ET) receptors with bosentan. 2. Rats were treated with bosentan or vehicle (5% gum arabic) for 7 days by gavage. 3. Baseline heart rate (HR) was higher in the bosentan-treated group compared with the control group (418 +/- 5 vs 357 +/- 4 b.p.m., respectively; P < 0.001). This baseline tachycardia was associated with a lower baroreflex sensitivity of the bradycardiac and tachycardiac responses in the bosentan-treated group compared with the control group. Sequential blockade of the parasympathetic and sympathetic autonomic nervous system with methylatropine and propranolol showed a higher intrinsic HR in the bosentan-treated group compared with the control group (411 +/- 5 vs 381 +/- 4 b.p.m., respectively; P < 0.05). This was accompanied by a higher cardiac sympathetic tone (31 +/- 1 vs 13 +/- 1%, respectively; P < 0.01) and a lower vagal parasympathetic tone (69 +/- 2 vs 87 +/- 2%, respectively; P < 0.01) in the bosentan-treated group compared with the control group. Variance and high-frequency oscillations of pulse interval (PI) variability in absolute and normalized units were lower in the bosentan-treated group than in the control group. Conversely, low-frequency (LF) oscillations of PI variability in absolute and normalized units, as well as variance and LF oscillations of systolic arterial pressure variability, were greater in the bosentan-treated group than the control group. 4. Overall, the data indicate an increased cardiac sympathetic drive, as well as lower vagal parasympathetic activity and baroreflex sensitivity, in conscious rats after chronic blockade of ET receptors with bosentan.
Resumo:
Background: The purpose of this study was to evaluate the effect of long-term use of oral contraceptives (DC) containing 0.20 mg of ethinylestradiol (EE) combined with 0.15 mg of gestodene (GEST) on the peak aerobic capacity and at the anaerobic threshold (AT) level in active and sedentary young women. Study Design: Eighty-eight women (23 +/- 2.1 years old) were divided into four groups active-OC (G1), active-NOC (G2), sedentary-OC (G3) and sedentary-NOC (G4) and were submitted to a continuous ergospirometric incremental test on a cycloergometer with 20 to 25 W min(-1) increments. Data were analyzed by two-way ANOVA with Tukey post hoc test. Level of significance was set at 5%. Results: The OC use effect for the variables relative and absolute oxygen uptake VO(2) mL kg(-1) min(-1); VO(2), L min(-1), respectively), carbon dioxide output (VCO(2), L min(-1)), ventilation (VE, L min(-1)), heart rate (HR, bpm), respiratory exchange ratio (RER) and power output (W) data, as well as the interaction between OC use and exercise effect on the peak of test and at the AT level did not differ significantly between the active groups (G1 and G2) and the sedentary groups (G3 and G4). As to the exercise effect, for all variables studied, it was noted that the active groups presented higher values for the variables VO(2), VCO(2), VE and power output (p<.05) than the sedentary groups. The RER and HR were similar (p>.05) at the peak and at the AT level between G1 vs. G3 and G2 vs. G4. Conclusions: Long-term use of OC containing EE 0.20 mg plus GEST 0.15 mg does not affect aerobic capacity at the peak and at the AT level of exercise tests. (C) 2010 Elsevier Inc. All rights reserved.