968 resultados para A Song of Ice and Fire


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of winter balance (bw) and summer balance (bs) have been carried out at Storbreen since 1949. Here we apply a simple mass balance model to study the climate sensitivity and to reconstruct the mass balance series prior to 1949. The model is calibrated and validated with data from an automatic weather station (AWS) operating in the ablation zone of Storbreen since 2001. Regression analysis revealed that bw was best modelled using precipitation data southwest of the glacier. Results from the model compared well with reported mass balance values for the period 1949-2006, obtained correlations (r) for bw and bs varied between 0.83 and 0.87 depending on model set up. Reconstruction of the mass balance series for the period 1924/1925-1948/1949 suggested a cumulative mass deficit of c. 30 m w.e. mainly due to highly negative summer balances, but also lower bw than the average for 1949-2006. Calculated change in specific mass balance for a ±1°C change in air temperature was ±0.55 m w.e., whereas a ±10 % increase in precipitation represented a change of ± 0.20 m w.e. Model results further indicated that for a 2°C warming, the ablation season will be extended by c. 30 days and that the period of ice melt at the AWS location will increase from c. 40 to c. 80 days.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pebbles (>10 mm) sampled from three drill sites on the continental rise west of the Antarctic Peninsula during Ocean Drilling Program Leg 178 were classified by shape and roundness. In addition, pebble lithology and surface texture were visually identified. To increase the pebble sample number to 331, three sites that were drilled 94 to 213 km from the continental shelf edge were integrated into the data set using magnetostratigraphy for core correlation. Pebbles were compared in three groups defined by the same stratigraphic intervals at each site: 3.1-2.2 Ma (late Pliocene), 2.2-0.76 Ma (late Pliocene-late Pleistocene), and 0.76 Ma to the Holocene. Pebble lithologies originate from sources on the Antarctic Peninsula margin. Most pebbles are metamorphic and sedimentary pebbles are rare (<6%), whereas mafic volcanic and intrusive igneous lithologies increase in abundance upsection. Pebbles from 3.1 to 0.76 Ma, plotted on sphericity-roundness diagrams, indicate original transport as basal and supraglacial/englacial debris. Pebbles are abundant and of diverse lithology. From 0.76 Ma to the present, the number of pebbles is low and their shape characteristics indicate they originated as basal debris. Observed changes in ice-rafted pebbles can be explained by growth of an ice sheet and inundation of the Antarctic Peninsula topography by ice ~0.76 Ma. Prior to this, outlet and valley glaciers transported debris at high levels within and at the base of the ice. The mass accumulation rate of sand fluctuates and includes rounded quartz grains. Ice-sheet growth may have been accompanied by overall cooling from subpolar to polar glacial regimes, which halted meltwater production and enhanced the growth of ice shelves, which consequently reduced sediment supply to icebergs.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples of dust from the Greenland Ice Sheet Project 2 (GISP2) ice core, Summit, Greenland, dated within marine isotope stage 2 (between 23,340 and 26,180 calendar years B.P.) around the time of the coldest, local, last glacial temperatures, have been analyzed to determine their provenance. To accomplish this, we have compared them with approximately Coeval aeolian sediments (mostly loesses) sampled in possible source areas (PSAs) from around the northern hemisphere. The <5-µm grain-size fraction of these samples was analyzed on the basis that it corresponds to the atmospheric dust component of that time and locale, which was sufficiently fine grained to be transported over long distances. On the basis of comparison of the clay mineralogy and Sr, Nd and Pb isotope composition with ice dust and PSAs and assuming that we have sampled the most important PSAs, we have determined that the probable source area of these GISP2 dusts was in eastern Asia. The dust was not derived from either the midcontinental United States or the Sahara, two more proximal areas that have been suggested as potential sources based on atmospheric circulation modeling. Except for a brief period during an interstadial, when dust transport was exceptionally low (for glacial times) and had a mineralogical composition indicative of a slightly more southern provenance, the source area of the dust did not change significantly during times of variably higher fluxes of dust with larger mean grain size or lower fluxes of dust with smaller mean grain size. This includes the high-dust period that correlates with the Heinrich 2 period of major iceberg discharge into the North Atlantic. Variable wind strengths must therefore be invoked to account for these abrupt and significant changes in dust flux and grain size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2015S22, an autonomous platform, drifting on Arctic sea ice, deployed during the Norwegian Young sea ICE cruise (N-ICE 2015) project. The resulting time series describes the evolution of snow depth as a function of place and time between 2015-03-01 and 2015-05-06 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2015S26, an autonomous platform, drifting on Arctic sea ice, deployed during the Norwegian Young sea ICE cruise (N-ICE 2015) project. The resulting time series describes the evolution of snow depth as a function of place and time between 2015-01-24 and 2015-02-21 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses.