970 resultados para 5000
Resumo:
The upper Holocene marine section from a kasten core taken from the oxygen minimum zone off Karachi (Pakistan) at water depth 700 m contains continuously laminated sediments with a sedimentation rate of 1.2 mm/yr and a unique record of monsoonal climatic variability covering the past 5000 years. Our chronostratigraphy is based on varve counts verified by conventional and AMS14C dating. Individual hemipelagic varve couplets are about 0.8-1.5 mm thick, with light-colored terrigenous laminae (A) deposited mainly during the winter monsoon alternating with dark-colored laminae (B) rich in marine organic matter, coccoliths, and fish debris that reflect deposition during the high-productivity season of the late summer monsoon (August-October). Precipitation and river runoff appear to control varve thickness and turbidite frequency. We infer that precipitation decreased in the river watershed (indicated by thinning varves) after 3500-4000 yr B.P. This is about the time of increasing aridification in the Near East and Middle East, as documented by decreasing Nile River runoff data and lake-level lowstands between Turkey and northwestern India. This precipitation pattern continued until today with precipitation minima about 2200-1900 yr B.P., 1000 yr B.P., and in the late Middle Ages (700-400 yr B.P.), and precipitation maxima in the intervening periods. As documented by spectral analysis, the thickness of varve couplets responds to the average length of a 250-yr cycle, a 125-yr cycle, the Gleissberg cycle of solar activity (95 yr), and a 56-yr cycle of unknown origin. Higher frequency cycles are also present at 45, 39, 29-31, and 14 yr. The sedimentary gray-value also shows strong variability in the 55-yr band plus a 31-yr cycle. Because high-frequency cyclicity in the ENSO band (ca. 3.5 and 5 yr) is only weakly expressed, our data do not support a straightforward interaction of the Pacific ENSO with the monsoon-driven climate system of the Arabian Sea.
Resumo:
Sediment core logs from six sediment cores in the Labrador Sea show millennial-scale climate variability during the last glacial by recording all Heinrich events and several major Dansgaard-Oeschger cycles. The same millennial-scale climate change is documented for surface-water d18O records of Neogloboquadrina pachyderma (left coiled); hence the surface-water d18O record can be derived from sediment core logging by means of multiple linear regression, providing a paleoclimate proxy record at very high temporal resolution (70 yrs). For the Labrador Sea, sediment core logs contain important information about deep-water current velocities and also reflect the variable input of IRD from different sources as inferred from grain-size analysis, benthic d18O, the relation of density and p-wave velocity, and magnetic susceptibility. For the last glacial, faster deep-water currents which correspond to highs in sediment physical properties, occurred during iceberg discharge and lasted for a several centuries to a few millennia. Those enhanced currents might have contributed to increased production of intermediate waters during times of reduced production of North Atlantic Deep Water. Hudson Strait might have acted as a major supplier of detrital carbonate only during lowered sea level (greater ice extent). During coldest atmospheric temperatures over Greenland, deep-water currents increased during iceberg discharge in the Labrador Sea, then surface water freshened shortly after, while the abrupt atmospheric temperature rise happened after a larger time lag of >=1 kyr. The correlation implies a strong link and common forcing for atmosphere, sea surface, and deep water during the last glacial at millennial time scales but decoupling at orbital time scales.
Resumo:
To provide insights into the long-term evolution of aquatic ecosystems without human interference, we here evaluate a decadal- to centennial-scale-resolution diatom record spanning about 12 ka of the Holsteinian interglacial (Marine Isotope Stage 11c). Using a partially varved sediment core from the Dethlingen palaeolake (northern Germany), which has previously been studied for palynological and microfacies signals, we document the co-evolution of the aquatic and surrounding terrestrial environment. The diatom record is dominated by the genera Stephanodiscus, Aulacoseira, Ulnaria and Fragilaria. Based on the diatom assemblages and physical sediment properties, the evolution of the Dethlingen palaeolake can be subdivided into three major phases. During the oldest phase (lasting ~1900 varve years), the lake was ~10-15 m deep and characterized by anoxic bottom-water conditions and a high nutrient content. The following ~5600 years exhibited water depths >20 m, maximum diatom and Pediastrum productivity, and a peak in allochtonous nutrient input. During this phase, water-column mixing became more vigorous, resulting in a breakdown of anoxia. The youngest lake phase (~4000-5000 years) was characterized by decreasing water depth, turbulent water conditions and decreased nutrient loading. Based on our palaeolimnological data, we conclude that the evolution of the Dethlingen palaeolake during the Holsteinian interglacial responded closely to (i) changes within the catchment area (as documented by vegetation and sedimentation) related to the transition from closed forests growing on nutrient-rich soils (mesocratic forest phase) to open forests developing on poor soils (oligocratic forest phase), and (ii) short-term climate variability as reflected in centennial-scale climate perturbations.
Resumo:
Holes 572C and 573A provide high resolution (about 5000-yr. sampling interval) records of oxygen and carbon isotope stratigraphy (Globigerinoides sacculifera) and carbonate stratigraphy for the Pliocene of the equatorial Pacific. These data enable detailed correlation of carbonate events between sites and provide additional resolution to the previous carbonate stratigraphy. Comparison of calcium carbonate and d18O data reveal a "Pacific-type" carbonate stratigraphy throughout the Pliocene. The d18O data have two modes of variability with a boundary at 2.9 Ma. The planktonic d18O record does not have a steplike enrichment at 3.2 Ma, which is observed in benthic records elsewhere, suggesting that this event does not represent the proposed initiation of northern hemispheric glaciation. Hole 572C does record a distinct d18O enrichment event at about 2.4 Ma, which has been previously associated with the onset of major ice rafting in the North Atlantic.
Resumo:
Decomposition of organic matter combined with density stratification generate a pronounced intermediate water oxygen minimum zone (OMZ) in the northwest Indian Ocean. This zone currently lies between water depths of 200 and 2000 m and extends approximately 5000 km southeast from the Arabian coast. Based upon benthic foraminiferal assemblage changes, it has been suggested that this OMZ was even more extensive during the late Miocene-early Pliocene (6.5-3.0 Ma), with a maximum volume and/or intensity at approximately 5.0 Ma. While this inference may contribute to an understanding of the history of northwest Indian Ocean upwelling, corroborating geochemical evidence for this interpretation has heretofore been lacking. Ocean Drilling Program (ODP) sites 752, 754, and 757 on Broken and Ninetyeast ridges are located within central Indian Ocean intermediate water depths (1086-1650 m) but outside the present lateral dimensions of the Indian Ocean OMZ. High-resolution chemical analyses of sediment from these sites indicate significant reductions in the flux of Mn and normalized Mn concentrations between 6.5 and 3.0 Ma that are most pronounced at approximately 5.0 Ma. Because late Miocene-Pliocene paleodepths for these sites were essentially the same as at present and because extremely low sedimentation rates (0.3-1.3 cm/ky) most likely precluded sedimentary metal oxide diagenesis, we suggest that the observed Mn depletions reflect diminished deposition of reducible Mn oxyhydroxide phases within O2 deficient intermediate waters and that this effect was most intense at approximately 5.0 Ma. This interpretation implies that waters with less than 2.0 mL/L O2 extended at least 1500 km beyond their present limits and is consistent with changes in benthic foraminifera assemblages. We further suggest this expanded Indian Ocean OMZ is related to regionally and/or globally increased biological productivity.
Resumo:
La doctrina hilemórfica de la materia como pura potencia y la forma como acto parece no satisfacer al dominico Alberto Magno, pues le resulta insuficiente para explicar los procesos naturales. Por esto, redefine los principios metafísicos fundamentales del aristotelismo, y asimismo expone nuevos principios constitutivos de la realidad, bajo inspiración de la filosofía neoplatónica y del pensamiento árabe. Así, Alberto sostiene que la materia prima debe ser entendida como una suerte de realidad actualizada, compuesta por diversas formas incoadas previamente al advenimiento de la forma sustancial. La incohatio formae, según el dominico, dispone a la materia a recibir cierta forma en vez de otra en la futura generación, lo cual justifica la regularidad de todo proceso natural. La materia primera, entonces, no participa meramente como sustrato del cambio sustancial y no puede ser definida como una realidad completamente simple. Por sí misma, posee un esse materiae y constituye una entidad substancial, la materia posee un ser independiente de la forma, al igual que la forma es independiente de la materia. En los tratados de la Physica y Metaphysica, Alberto Magno desarrolla una doctrina propia, aunque claramente influenciada por la cosmología y metafísica averroísta.
Resumo:
Based on the study of 10 sediment cores and 40 core-top samples from the South China Sea (SCS) we obtained proxy records of past changes in East Asian monsoon climate on millennial to bidecadal time scales over the last 220,000 years. Climate proxies such as global sea level, estimates of paleotemperature, salinity, and nutrients in surface water, ventilation of deep water, paleowind strength, freshwater lids, fluvial and/or eolian sediment supply, and sediment winnowing on the sea floor were derived from planktonic and benthic stable-isotope records, the distribution of siliciclastic grain sizes, planktonic foraminifera species, and the UK37 biomarker index. Four cores were AMS-14C-dated. Two different regimes of monsoon circulation dominated the SCS over the last two glacial cycles, being linked to the minima and maxima of Northern Hemisphere solar insolation. (1) Glacial stages led to a stable estuarine circulation and a strong O2-minimum layer via a closure of the Borneo sea strait. Strong northeast monsoon and cool surface water occurred during winter, in part fed by an inflow from the north tip of Luzon. In contrast, summer temperatures were as high as during interglacials, hence the seasonality was strong. Low wetness in subtropical South China was opposed to large river input from the emerged Sunda shelf, serving as glacial refuge for tropical forest. (2) Interglacials were marked by a strong inflow of warm water via the Borneo sea strait, intense upwelling southeast of Vietnam and continental wetness in China during summer, weaker northeast monsoon and high sea-surface temperatures during winter, i.e. low seasonality. On top of the long-term variations we found millennial- to centennial-scale cold and dry, warm and humid spells during the Holocene, glacial Terminations I and II, and Stage 3. The spells were coeval with published variations in the Indian monsoon and probably, with the cold Heinrich and warm Dansgaard-Oeschger events recorded in Greenland ice cores, thus suggesting global climatic teleconnections. Holocene oscillations in the runoff from South China centered around periodicities of 775 years, ascribed to subharmonics of the 1500-year cycle in oceanic thermohaline circulation. 102/84-year cycles are tentatively assigned to the Gleissberg period of solar activity. Phase relationships among various monsoon proxies near the onset of Termination IA suggest that summer-monsoon rains and fluvial runoff from South China had already intensified right after the last glacial maximum (LGM) insolation minimum, coeval with the start of Antarctic ice melt, prior to the d18O signals of global sea-level rise. Vice versa, the strength of winter-monsoon winds decreased in short centennial steps only 3000-4000 years later, along with the melt of glacial ice sheets in the Northern Hemisphere.
Resumo:
La enfermedad celiaca, es un trastorno producido por una alteración genética a nivel del cromosoma 14; pero para que la enfermedad se manifieste deben estar presentes, en forma simultanea, dos componentes fundamentales: el hereditario por un lado y por otro un externo que se da por el consumo de proteínas tóxicas que se encuentran en algunos alimentos y que son atrofiantes de la mucosa intestinal. Su incidencia varía entre 1 en 300 (Irlanda occidental) y 1 en 5000 nacidos vivos en Suecia. Es una enfermedad en la cual la membrana del intestino delgado o mucosa intestinal, se ha dañado por causa del consumo de alimentos que contienen cereales en su composición como el trigo, la cebada el centeno y posiblemente en la avena por cuestiones de contaminación cruzada, por eso se hace referencia a los alimentos sin TACC, sigla formada por las iniciales de los nombres de estos cereales. En caso de la avena se discute sobre su toxicidad, por que se cree que es menos potente que los demás cereales, cabe destacar que el arroz y el maíz no presentan ningún grado de toxicidad. Los cereales identificados como tóxicos, para el resto de la población son inofensivos, en los celiacos dañan la mucosa intestinal y atrofian las vellosidades del intestino que son como pliegues agrupados en forma dedos que por su intermedio se produce la absorción de los nutrientes de los alimentos. No son los cereales en si los que producen la afección, si no ciertas proteínas que se encuentran en su composición las que se conocen con el nombre de pro láminas tóxicas, las que mencionaremos a continuación según su grado de toxicidad: • del trigo: gliadina • del centeno: secalina • de la cebada: hordeina • de la avena: avenina Lo que provoca estas toxinas, es la mala absorción de lípidos, hidratos de carbono, y en menor grado las proteínas. Esto lleva a una irritación a nivel del intestino, perdida de apetito, diarrea, y en especial esteatorrea que es una diarrea cuyo principal componente en la materia fecal, es la grasa. Una vez introducida la problemática y de acuerdo a los conceptos vertidos que intentan justificar el tema de estudio, se plantea el problema como sigue: ¿Cuál es el nivel de conocimiento sobre celiaquía de las personas que asisten al consultorio de pediatría del Centro de Salud Nº107 del distrito 25 de Mayo, San Rafael durante febrero de 2009, y qué puede aportar enfermería para la detección precoz?