965 resultados para 290901 Electrical Engineering
Resumo:
Our work focuses on experimental and theoretical studies aimed at establishing a fundamental understanding of the principal electrical and optical processes governing the operation of quantum dot solar cells (QDSC) and their feasibility for the realization of intermediate band solar cell (IBSC). Uniform performance QD solar cells with high conversion efficiency have been fabricated using carefully calibrated process recipes as the basis of all reliable experimental characterization. The origin for the enhancement of the short circuit current density (Jsc) in QD solar cells was carefully investigated. External quantum efficiency (EQE) measurements were performed as a measure of the below bandgap distribution of transition states. In this work, we found that the incorporation of self-assembled quantum dots (QDs) interrupts the lattice periodicity and introduce a greatly broadened tailing density of states extending from the bandedge towards mid-gap. A below-bandgap density of states (DOS) model with an extended Urbach tail has been developed. In particular, the below-bandgap photocurrent generation has been attributed to transitions via confined energy states and background continuum tailing states. Photoluminescence measurement is used to measure the energy level of the lowest available state and the coupling effect between QD states and background tailing states because it results from a non-equilibrium process. A basic I-V measurement reveals a degradation of the open circuit voltage (Voc) of QD solar cells, which is related to a one sub-bandgap photon absorption process followed by a direct collection of the generated carriers by the external circuit. We have proposed a modified Shockley-Queisser (SQ) model that predicts the degradation of Voc compared with a reference bulk device. Whenever an energy state within the forbidden gap can facilitate additional absorption, it can facilitate recombination as well. If the recombination is non-radiative, it is detrimental to solar cell performance. We have also investigated the QD trapping effects as deep level energy states. Without an efficient carrier extraction pathway, the QDs can indeed function as mobile carriers traps. Since hole energy levels are mostly connected with hole collection under room temperature, the trapping effect is more severe for electrons. We have tried to electron-dope the QDs to exert a repulsive Coulomb force to help improve the carrier collection efficiency. We have experimentally observed a 30% improvement of Jsc for 4e/dot devices compared with 0e/dot devices. Electron-doping helps with better carrier collection efficiency, however, we have also measured a smaller transition probability from valance band to QD states as a direct manifestation of the Pauli Exclusion Principle. The non-linear performance is of particular interest. With the availability of laser with on-resonance and off-resonance excitation energy, we have explored the photocurrent enhancement by a sequential two-photon absorption (2PA) process via the intermediate states. For the first time, we are able to distinguish the nonlinearity effect by 1PA and 2PA process. The observed 2PA current under off-resonant and on-resonant excitation comes from a two-step transition via the tailing states instead of the QD states. However, given the existence of an extended Urbach tail and the small number of photons available for the intermediate states to conduction band transition, the experimental results suggest that with the current material system, the intensity requirement for an observable enhancement of photocurrent via a 2PA process is much higher than what is available from concentrated sun light. In order to realize the IBSC model, a matching transition strength needs to be achieved between valance band to QD states and QD states to conduction band. However, we have experimentally shown that only a negligible amount of signal can be observed at cryogenic temperature via the transition from QD states to conduction band under a broadband IR source excitation. Based on the understanding we have achieved, we found that the existence of the extended tailing density of states together with the large mismatch of the transition strength from VB to QD and from QD to CB, has systematically put into question the feasibility of the IBSC model with QDs.
Resumo:
We propose three research problems to explore the relations between trust and security in the setting of distributed computation. In the first problem, we study trust-based adversary detection in distributed consensus computation. The adversaries we consider behave arbitrarily disobeying the consensus protocol. We propose a trust-based consensus algorithm with local and global trust evaluations. The algorithm can be abstracted using a two-layer structure with the top layer running a trust-based consensus algorithm and the bottom layer as a subroutine executing a global trust update scheme. We utilize a set of pre-trusted nodes, headers, to propagate local trust opinions throughout the network. This two-layer framework is flexible in that it can be easily extensible to contain more complicated decision rules, and global trust schemes. The first problem assumes that normal nodes are homogeneous, i.e. it is guaranteed that a normal node always behaves as it is programmed. In the second and third problems however, we assume that nodes are heterogeneous, i.e, given a task, the probability that a node generates a correct answer varies from node to node. The adversaries considered in these two problems are workers from the open crowd who are either investing little efforts in the tasks assigned to them or intentionally give wrong answers to questions. In the second part of the thesis, we consider a typical crowdsourcing task that aggregates input from multiple workers as a problem in information fusion. To cope with the issue of noisy and sometimes malicious input from workers, trust is used to model workers' expertise. In a multi-domain knowledge learning task, however, using scalar-valued trust to model a worker's performance is not sufficient to reflect the worker's trustworthiness in each of the domains. To address this issue, we propose a probabilistic model to jointly infer multi-dimensional trust of workers, multi-domain properties of questions, and true labels of questions. Our model is very flexible and extensible to incorporate metadata associated with questions. To show that, we further propose two extended models, one of which handles input tasks with real-valued features and the other handles tasks with text features by incorporating topic models. Our models can effectively recover trust vectors of workers, which can be very useful in task assignment adaptive to workers' trust in the future. These results can be applied for fusion of information from multiple data sources like sensors, human input, machine learning results, or a hybrid of them. In the second subproblem, we address crowdsourcing with adversaries under logical constraints. We observe that questions are often not independent in real life applications. Instead, there are logical relations between them. Similarly, workers that provide answers are not independent of each other either. Answers given by workers with similar attributes tend to be correlated. Therefore, we propose a novel unified graphical model consisting of two layers. The top layer encodes domain knowledge which allows users to express logical relations using first-order logic rules and the bottom layer encodes a traditional crowdsourcing graphical model. Our model can be seen as a generalized probabilistic soft logic framework that encodes both logical relations and probabilistic dependencies. To solve the collective inference problem efficiently, we have devised a scalable joint inference algorithm based on the alternating direction method of multipliers. The third part of the thesis considers the problem of optimal assignment under budget constraints when workers are unreliable and sometimes malicious. In a real crowdsourcing market, each answer obtained from a worker incurs cost. The cost is associated with both the level of trustworthiness of workers and the difficulty of tasks. Typically, access to expert-level (more trustworthy) workers is more expensive than to average crowd and completion of a challenging task is more costly than a click-away question. In this problem, we address the problem of optimal assignment of heterogeneous tasks to workers of varying trust levels with budget constraints. Specifically, we design a trust-aware task allocation algorithm that takes as inputs the estimated trust of workers and pre-set budget, and outputs the optimal assignment of tasks to workers. We derive the bound of total error probability that relates to budget, trustworthiness of crowds, and costs of obtaining labels from crowds naturally. Higher budget, more trustworthy crowds, and less costly jobs result in a lower theoretical bound. Our allocation scheme does not depend on the specific design of the trust evaluation component. Therefore, it can be combined with generic trust evaluation algorithms.
Resumo:
While humans can easily segregate and track a speaker's voice in a loud noisy environment, most modern speech recognition systems still perform poorly in loud background noise. The computational principles behind auditory source segregation in humans is not yet fully understood. In this dissertation, we develop a computational model for source segregation inspired by auditory processing in the brain. To support the key principles behind the computational model, we conduct a series of electro-encephalography experiments using both simple tone-based stimuli and more natural speech stimulus. Most source segregation algorithms utilize some form of prior information about the target speaker or use more than one simultaneous recording of the noisy speech mixtures. Other methods develop models on the noise characteristics. Source segregation of simultaneous speech mixtures with a single microphone recording and no knowledge of the target speaker is still a challenge. Using the principle of temporal coherence, we develop a novel computational model that exploits the difference in the temporal evolution of features that belong to different sources to perform unsupervised monaural source segregation. While using no prior information about the target speaker, this method can gracefully incorporate knowledge about the target speaker to further enhance the segregation.Through a series of EEG experiments we collect neurological evidence to support the principle behind the model. Aside from its unusual structure and computational innovations, the proposed model provides testable hypotheses of the physiological mechanisms of the remarkable perceptual ability of humans to segregate acoustic sources, and of its psychophysical manifestations in navigating complex sensory environments. Results from EEG experiments provide further insights into the assumptions behind the model and provide motivation for future single unit studies that can provide more direct evidence for the principle of temporal coherence.
Resumo:
In the half-duplex relay channel applying the decode-and-forward protocol the relay introduces energy over random time intervals into the channel as observed at the destination. Consequently, during simulation the average signal power seen at the destination becomes known at run-time only. Therefore, in order to obtain specific performance measures at the signal-to-noise ratio (SNR) of interest, strategies are required to adjust the noise variance during simulation run-time. It is necessary that these strategies result in the same performance as measured under real-world conditions. This paper introduces three noise power allocation strategies and demonstrates their applicability using numerical and simulation results.
Resumo:
A sensing device for a touchless, hand gesture, user interface based on an inexpensive passive infrared pyroelectric detector array is presented. The 2 x 2 element sensor responds to changing infrared radiation generated by hand movement over the array. The sensing range is from a few millimetres to tens of centimetres. The low power consumption (< 50 μW) enables the sensor’s use in mobile devices and in low energy applications. Detection rates of 77% have been demonstrated using a prototype system that differentiates the four main hand motion trajectories – up, down, left and right. This device allows greater non-contact control capability without an increase in size, cost or power consumption over existing on/off devices.
Resumo:
A 2-dimensional dynamic analog of squid tentacles was presented. The tentacle analog consists of a multi-cell structure, which can be easily replicated to a large scale. Each cell of the model is a quadrilateral with unit masses at the corners. Each side of the quadrilateral is a spring-damper system in parallel. The spring constants are the controls for the system. The dynamics are subject to the constraint that the area of each quadrilateral must remain constant. The system dynamics was analyzed, and various equilibrium points were found with different controls. Then these equilibrium points were further determined experimentally, demonstrated to be asymptotically stable. A simulation built in MATLAB was used to find the convergence rates under different controls and damping coefficients. Finally, a control scheme was developed and used to drive the system to several configurations observed in real tentacle.
Resumo:
Constant false alarm rate (CFAR) techniques can be used in Pseudo-Noise (PN) code acquisition in Spread Spectrum (SS) communication systems, and all the CFAR techniques perform well in homogeneous background PN code acquisition. However, in non-homogeneous background, some CFAR techniques suffer rapid degradation. GO/SO (Greatest-of/Smallest-of) CFAR and adaptive censored mean level detector (ACMLD) are two adaptive CFAR techniques, which are analyzed and compared with other CFAR techniques. The simulation results show that GO/SO CFAR is superior to other CFAR techniques, it maintains short mean acquisition time (MAT) even at environment with strong clutter noise, and ACMLD is suitable for background with strong interfering targets
Resumo:
The last two decades have seen many exciting examples of tiny robots from a few cm3 to less than one cm3. Although individually limited, a large group of these robots has the potential to work cooperatively and accomplish complex tasks. Two examples from nature that exhibit this type of cooperation are ant and bee colonies. They have the potential to assist in applications like search and rescue, military scouting, infrastructure and equipment monitoring, nano-manufacture, and possibly medicine. Most of these applications require the high level of autonomy that has been demonstrated by large robotic platforms, such as the iRobot and Honda ASIMO. However, when robot size shrinks down, current approaches to achieve the necessary functions are no longer valid. This work focused on challenges associated with the electronics and fabrication. We addressed three major technical hurdles inherent to current approaches: 1) difficulty of compact integration; 2) need for real-time and power-efficient computations; 3) unavailability of commercial tiny actuators and motion mechanisms. The aim of this work was to provide enabling hardware technologies to achieve autonomy in tiny robots. We proposed a decentralized application-specific integrated circuit (ASIC) where each component is responsible for its own operation and autonomy to the greatest extent possible. The ASIC consists of electronics modules for the fundamental functions required to fulfill the desired autonomy: actuation, control, power supply, and sensing. The actuators and mechanisms could potentially be post-fabricated on the ASIC directly. This design makes for a modular architecture. The following components were shown to work in physical implementations or simulations: 1) a tunable motion controller for ultralow frequency actuation; 2) a nonvolatile memory and programming circuit to achieve automatic and one-time programming; 3) a high-voltage circuit with the highest reported breakdown voltage in standard 0.5 μm CMOS; 4) thermal actuators fabricated using CMOS compatible process; 5) a low-power mixed-signal computational architecture for robotic dynamics simulator; 6) a frequency-boost technique to achieve low jitter in ring oscillators. These contributions will be generally enabling for other systems with strict size and power constraints such as wireless sensor nodes.
Resumo:
In order to power our planet for the next century, clean energy technologies need to be developed and deployed. Photovoltaic solar cells, which convert sunlight into electricity, are a clear option; however, they currently supply 0.1% of the US electricity due to the relatively high cost per Watt of generation. Thus, our goal is to create more power from a photovoltaic device, while simultaneously reducing its price. To accomplish this goal, we are creating new high efficiency anti-reflection coatings that allow more of the incident sunlight to be converted to electricity, using simple and inexpensive coating techniques that enable reduced manufacturing costs. Traditional anti-reflection coatings (consisting of thin layers of non-absorbing materials) rely on the destructive interference of the reflected light, causing more light to enter the device and subsequently get absorbed. While these coatings are used on nearly all commercial cells, they are wavelength dependent and are deposited using expensive processes that require elevated temperatures, which increase production cost and can be detrimental to some temperature sensitive solar cell materials. We are developing two new classes of anti-reflection coatings (ARCs) based on textured dielectric materials: (i) a transparent, flexible paper technology that relies on optical scattering and reduced refractive index contrast between the air and semiconductor and (ii) silicon dioxide (SiO2) nanosphere arrays that rely on collective optical resonances. Both techniques improve solar cell absorption and ultimately yield high efficiency, low cost devices. For the transparent paper-based ARCs, we have recently shown that they improve solar cell efficiencies for all angles of incident illumination reducing the need for costly tracking of the sun’s position. For a GaAs solar cell, we achieved a 24% improvement in the power conversion efficiency using this simple coating. Because the transparent paper is made from an earth abundant material (wood pulp) using an easy, inexpensive and scalable process, this type of ARC is an excellent candidate for future solar technologies. The coatings based on arrays of dielectric nanospheres also show excellent potential for inexpensive, high efficiency solar cells. The fabrication process is based on a Meyer rod rolling technique, which can be performed at room-temperature and applied to mass production, yielding a scalable and inexpensive manufacturing process. The deposited monolayer of SiO2 nanospheres, having a diameter of 500 nm on a bare Si wafer, leads to a significant increase in light absorption and a higher expected current density based on initial simulations, on the order of 15-20%. With application on a Si solar cell containing a traditional anti-reflection coating (Si3N4 thin-film), an additional increase in the spectral current density is observed, 5% beyond what a typical commercial device would achieve. Due to the coupling between the spheres originated from Whispering Gallery Modes (WGMs) inside each nanosphere, the incident light is strongly coupled into the high-index absorbing material, leading to increased light absorption. Furthermore, the SiO2 nanospheres scatter and diffract light in such a way that both the optical and electrical properties of the device have little dependence on incident angle, eliminating the need for solar tracking. Because the layer can be made with an easy, inexpensive, and scalable process, this anti-reflection coating is also an excellent candidate for replacing conventional technologies relying on complicated and expensive processes.
Resumo:
We consider an LTE network where a secondary user acts as a relay, transmitting data to the primary user using a decode-and-forward mechanism, transparent to the base-station (eNodeB). Clearly, the relay can decode symbols more reliably if the employed precoder matrix indicators (PMIs) are known. However, for closed loop spatial multiplexing (CLSM) transmit mode, this information is not always embedded in the downlink signal, leading to a need for effective methods to determine the PMI. In this thesis, we consider 2x2 MIMO and 4x4 MIMO downlink channels corresponding to CLSM and formulate two techniques to estimate the PMI at the relay using a hypothesis testing framework. We evaluate their performance via simulations for various ITU channel models over a range of SNR and for different channel quality indicators (CQIs). We compare them to the case when the true PMI is known at the relay and show that the performance of the proposed schemes are within 2 dB at 10% block error rate (BLER) in almost all scenarios. Furthermore, the techniques add minimal computational overhead over existent receiver structure. Finally, we also identify scenarios when using the proposed precoder detection algorithms in conjunction with the cooperative decode-and-forward relaying mechanism benefits the PUE and improves the BLER performance for the PUE. Therefore, we conclude from this that the proposed algorithms as well as the cooperative relaying mechanism at the CMR can be gainfully employed in a variety of real-life scenarios in LTE networks.