895 resultados para 230117 Operations Research
Resumo:
Guest editorial Ali Emrouznejad is a Senior Lecturer at the Aston Business School in Birmingham, UK. His areas of research interest include performance measurement and management, efficiency and productivity analysis as well as data mining. He has published widely in various international journals. He is an Associate Editor of IMA Journal of Management Mathematics and Guest Editor to several special issues of journals including Journal of Operational Research Society, Annals of Operations Research, Journal of Medical Systems, and International Journal of Energy Management Sector. He is in the editorial board of several international journals and co-founder of Performance Improvement Management Software. William Ho is a Senior Lecturer at the Aston University Business School. Before joining Aston in 2005, he had worked as a Research Associate in the Department of Industrial and Systems Engineering at the Hong Kong Polytechnic University. His research interests include supply chain management, production and operations management, and operations research. He has published extensively in various international journals like Computers & Operations Research, Engineering Applications of Artificial Intelligence, European Journal of Operational Research, Expert Systems with Applications, International Journal of Production Economics, International Journal of Production Research, Supply Chain Management: An International Journal, and so on. His first authored book was published in 2006. He is an Editorial Board member of the International Journal of Advanced Manufacturing Technology and an Associate Editor of the OR Insight Journal. Currently, he is a Scholar of the Advanced Institute of Management Research. Uses of frontier efficiency methodologies and multi-criteria decision making for performance measurement in the energy sector This special issue aims to focus on holistic, applied research on performance measurement in energy sector management and for publication of relevant applied research to bridge the gap between industry and academia. After a rigorous refereeing process, seven papers were included in this special issue. The volume opens with five data envelopment analysis (DEA)-based papers. Wu et al. apply the DEA-based Malmquist index to evaluate the changes in relative efficiency and the total factor productivity of coal-fired electricity generation of 30 Chinese administrative regions from 1999 to 2007. Factors considered in the model include fuel consumption, labor, capital, sulphur dioxide emissions, and electricity generated. The authors reveal that the east provinces were relatively and technically more efficient, whereas the west provinces had the highest growth rate in the period studied. Ioannis E. Tsolas applies the DEA approach to assess the performance of Greek fossil fuel-fired power stations taking undesirable outputs into consideration, such as carbon dioxide and sulphur dioxide emissions. In addition, the bootstrapping approach is deployed to address the uncertainty surrounding DEA point estimates, and provide bias-corrected estimations and confidence intervals for the point estimates. The author revealed from the sample that the non-lignite-fired stations are on an average more efficient than the lignite-fired stations. Maethee Mekaroonreung and Andrew L. Johnson compare the relative performance of three DEA-based measures, which estimate production frontiers and evaluate the relative efficiency of 113 US petroleum refineries while considering undesirable outputs. Three inputs (capital, energy consumption, and crude oil consumption), two desirable outputs (gasoline and distillate generation), and an undesirable output (toxic release) are considered in the DEA models. The authors discover that refineries in the Rocky Mountain region performed the best, and about 60 percent of oil refineries in the sample could improve their efficiencies further. H. Omrani, A. Azadeh, S. F. Ghaderi, and S. Abdollahzadeh presented an integrated approach, combining DEA, corrected ordinary least squares (COLS), and principal component analysis (PCA) methods, to calculate the relative efficiency scores of 26 Iranian electricity distribution units from 2003 to 2006. Specifically, both DEA and COLS are used to check three internal consistency conditions, whereas PCA is used to verify and validate the final ranking results of either DEA (consistency) or DEA-COLS (non-consistency). Three inputs (network length, transformer capacity, and number of employees) and two outputs (number of customers and total electricity sales) are considered in the model. Virendra Ajodhia applied three DEA-based models to evaluate the relative performance of 20 electricity distribution firms from the UK and the Netherlands. The first model is a traditional DEA model for analyzing cost-only efficiency. The second model includes (inverse) quality by modelling total customer minutes lost as an input data. The third model is based on the idea of using total social costs, including the firm’s private costs and the interruption costs incurred by consumers, as an input. Both energy-delivered and number of consumers are treated as the outputs in the models. After five DEA papers, Stelios Grafakos, Alexandros Flamos, Vlasis Oikonomou, and D. Zevgolis presented a multiple criteria analysis weighting approach to evaluate the energy and climate policy. The proposed approach is akin to the analytic hierarchy process, which consists of pairwise comparisons, consistency verification, and criteria prioritization. In the approach, stakeholders and experts in the energy policy field are incorporated in the evaluation process by providing an interactive mean with verbal, numerical, and visual representation of their preferences. A total of 14 evaluation criteria were considered and classified into four objectives, such as climate change mitigation, energy effectiveness, socioeconomic, and competitiveness and technology. Finally, Borge Hess applied the stochastic frontier analysis approach to analyze the impact of various business strategies, including acquisition, holding structures, and joint ventures, on a firm’s efficiency within a sample of 47 natural gas transmission pipelines in the USA from 1996 to 2005. The author finds that there were no significant changes in the firm’s efficiency by an acquisition, and there is a weak evidence for efficiency improvements caused by the new shareholder. Besides, the author discovers that parent companies appear not to influence a subsidiary’s efficiency positively. In addition, the analysis shows a negative impact of a joint venture on technical efficiency of the pipeline company. To conclude, we are grateful to all the authors for their contribution, and all the reviewers for their constructive comments, which made this special issue possible. We hope that this issue would contribute significantly to performance improvement of the energy sector.
Resumo:
Zambia and many other countries in Sub-Saharan Africa face a key challenge of sustaining high levels of coverage of AIDS treatment under prospects of dwindling global resources for HIV/AIDS treatment. Policy debate in HIV/AIDS is increasingly paying more focus to efficiency in the use of available resources. In this chapter, we apply Data Envelopment Analysis (DEA) to estimate short term technical efficiency of 34 HIV/AIDS treatment facilities in Zambia. The data consists of input variables such as human resources, medical equipment, building space, drugs, medical supplies, and other materials used in providing HIV/AIDS treatment. Two main outputs namely, numbers of ART-years (Anti-Retroviral Therapy-years) and pre-ART-years are included in the model. Results show the mean technical efficiency score to be 83%, with great variability in efficiency scores across the facilities. Scale inefficiency is also shown to be significant. About half of the facilities were on the efficiency frontier. We also construct bootstrap confidence intervals around the efficiency scores.
Resumo:
Since its introduction in 1978, data envelopment analysis (DEA) has become one of the preeminent nonparametric methods for measuring efficiency and productivity of decision making units (DMUs). Charnes et al. (1978) provided the original DEA constant returns to scale (CRS) model, later extended to variable returns to scale (VRS) by Banker et al. (1984). These ‘standard’ models are known by the acronyms CCR and BCC, respectively, and are now employed routinely in areas that range from assessment of public sectors, such as hospitals and health care systems, schools, and universities, to private sectors, such as banks and financial institutions (Emrouznejad et al. 2008; Emrouznejad and De Witte 2010). The main objective of this volume is to publish original studies that are beyond the two standard CCR and BCC models with both theoretical and practical applications using advanced models in DEA.
Resumo:
This paper explains some drawbacks on previous approaches for detecting influential observations in deterministic nonparametric data envelopment analysis models as developed by Yang et al. (Annals of Operations Research 173:89-103, 2010). For example efficiency scores and relative entropies obtained in this model are unimportant to outlier detection and the empirical distribution of all estimated relative entropies is not a Monte-Carlo approximation. In this paper we developed a new method to detect whether a specific DMU is truly influential and a statistical test has been applied to determine the significance level. An application for measuring efficiency of hospitals is used to show the superiority of this method that leads to significant advancements in outlier detection. © 2014 Springer Science+Business Media New York.
Resumo:
Renewable energy forms have been widely used in the past decades highlighting a "green" shift in energy production. An actual reason behind this turn to renewable energy production is EU directives which set the Union's targets for energy production from renewable sources, greenhouse gas emissions and increase in energy efficiency. All member countries are obligated to apply harmonized legislation and practices and restructure their energy production networks in order to meet EU targets. Towards the fulfillment of 20-20-20 EU targets, in Greece a specific strategy which promotes the construction of large scale Renewable Energy Source plants is promoted. In this paper, we present an optimal design of the Greek renewable energy production network applying a 0-1 Weighted Goal Programming model, considering social, environmental and economic criteria. In the absence of a panel of experts Data Envelopment Analysis (DEA) approach is used in order to filter the best out of the possible network structures, seeking for the maximum technical efficiency. Super-Efficiency DEA model is also used in order to reduce the solutions and find the best out of all the possible. The results showed that in order to achieve maximum efficiency, the social and environmental criteria must be weighted more than the economic ones.
Resumo:
One of the major challenges in measuring efficiency in terms of resources and outcomes is the assessment of the evolution of units over time. Although Data Envelopment Analysis (DEA) has been applied for time series datasets, DEA models, by construction, form the reference set for inefficient units (lambda values) based on their distance from the efficient frontier, that is, in a spatial manner. However, when dealing with temporal datasets, the proximity in time between units should also be taken into account, since it reflects the structural resemblance among time periods of a unit that evolves. In this paper, we propose a two-stage spatiotemporal DEA approach, which captures both the spatial and temporal dimension through a multi-objective programming model. In the first stage, DEA is solved iteratively extracting for each unit only previous DMUs as peers in its reference set. In the second stage, the lambda values derived from the first stage are fed to a Multiobjective Mixed Integer Linear Programming model, which filters peers in the reference set based on weights assigned to the spatial and temporal dimension. The approach is demonstrated on a real-world example drawn from software development.
Resumo:
Incorporating Material Balance Principle (MBP) in industrial and agricultural performance measurement systems with pollutant factors has been on the rise in recent years. Many conventional methods of performance measurement have proven incompatible with the material flow conditions. This study will address the issue of eco-efficiency measurement adjusted for pollution, taking into account materials flow conditions and the MBP requirements, in order to provide ‘real’ measures of performance that can serve as guides when making policies. We develop a new approach by integrating slacks-based measure to enhance the Malmquist Luenberger Index by a material balance condition that reflects the conservation of matter. This model is compared with a similar model, which incorporates MBP using the trade-off approach to measure productivity and eco-efficiency trends of power plants. Results reveal similar findings for both models substantiating robustness and applicability of the proposed model in this paper.
Resumo:
Non-parametric methods for efficiency evaluation were designed to analyse industries comprising multi-input multi-output producers and lacking data on market prices. Education is a typical example. In this chapter, we review applications of DEA in secondary and tertiary education, focusing on the opportunities that this offers for benchmarking at institutional level. At secondary level, we investigate also the disaggregation of efficiency measures into pupil-level and school-level effects. For higher education, while many analyses concern overall institutional efficiency, we examine also studies that take a more disaggregated approach, centred either around the performance of specific functional areas or that of individual employees.
Resumo:
Using the risk measure CV aR in �nancial analysis has become more and more popular recently. In this paper we apply CV aR for portfolio optimization. The problem is formulated as a two-stage stochastic programming model, and the SRA algorithm, a recently developed heuristic algorithm, is applied for minimizing CV aR.
Resumo:
The existence of viable solutions is proven for nonautonomous upper semicontinuous differential inclusions whose right-hand side is contained in the Clarke subdifferential of a locally Lipschitz continuous function.
Resumo:
For industrialised economy of ourdays, remanufacturing represents perhaps the largest unexploited resource and opportunity for realising a greater growth of the economy in an environmental-conscious manner. The aim of this paper is to investigate of the impact of remanufacturing in the economy from an economic-efficiency point of view. In static context this phenomenon was analysed in the literature. We use the multi-sector input–output framework in a dynamic context to study intra-period relationships of the sectors of economy. We extend the classical dynamic input–output model taking into consideration the activity of remanufacturing .We try to answer the question, whether the remanufacturing/reuse increases the growth possibility of an economy. We expose a sufficient condition concerning the effectivity of an economy with remanufacturing. By this evaluation we analyse a possible sustainable development of the economy on the basis of the product recovery management of industries.
Resumo:
A correlation scheme (leading to a special equilibrium called “soft” correlated equilibrium) is applied for two-person finite games in extensive form with perfect information. Randomization by an umpire takes place over the leaves of the game tree. At every decision point players have the choice either to follow the recommendation of the umpire blindly or freely choose any other action except the one suggested. This scheme can lead to Pareto-improved outcomes of other correlated equilibria. Computational issues of maximizing a linear function over the set of soft correlated equilibria are considered and a linear-time algorithm in terms of the number of edges in the game tree is given for a special procedure called “subgame perfect optimization”.
Resumo:
The “Nash program” initiated by Nash (Econometrica 21:128–140, 1953) is a research agenda aiming at representing every axiomatically determined cooperative solution to a game as a Nash outcome of a reasonable noncooperative bargaining game. The L-Nash solution first defined by Forgó (Interactive Decisions. Lecture Notes in Economics and Mathematical Systems, vol 229. Springer, Berlin, pp 1–15, 1983) is obtained as the limiting point of the Nash bargaining solution when the disagreement point goes to negative infinity in a fixed direction. In Forgó and Szidarovszky (Eur J Oper Res 147:108–116, 2003), the L-Nash solution was related to the solution of multiciteria decision making and two different axiomatizations of the L-Nash solution were also given in this context. In this paper, finite bounds are established for the penalty of disagreement in certain special two-person bargaining problems, making it possible to apply all the implementation models designed for Nash bargaining problems with a finite disagreement point to obtain the L-Nash solution as well. For another set of problems where this method does not work, a version of Rubinstein’s alternative offer game (Econometrica 50:97–109, 1982) is shown to asymptotically implement the L-Nash solution. If penalty is internalized as a decision variable of one of the players, then a modification of Howard’s game (J Econ Theory 56:142–159, 1992) also implements the L-Nash solution.
Resumo:
Pairwise comparison is a popular assessment method either for deriving criteria-weights or for evaluating alternatives according to a given criterion. In real-world applications consistency of the comparisons rarely happens: intransitivity can occur. The aim of the paper is to discuss the relationship between the consistency of the decision maker—described with the error-free property—and the consistency of the pairwise comparison matrix (PCM). The concept of error-free matrix is used to demonstrate that consistency of the PCM is not a sufficient condition of the error-free property of the decision maker. Informed and uninformed decision makers are defined. In the first stage of an assessment method a consistent or near-consistent matrix should be achieved: detecting, measuring and improving consistency are part of any procedure with both types of decision makers. In the second stage additional information are needed to reveal the decision maker’s real preferences. Interactive questioning procedures are recommended to reach that goal.