875 resultados para 16s rRNA sequencing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Novel, low-abundance microbial species can be easily overlooked in standard polymerase chain reaction (PCR)-based surveys. We used community genomic data obtained without PCR or cultivation to reconstruct DNA fragments bearing unusual 16S ribosomal RNA ( rRNA) and protein-coding genes from organisms belonging to novel archaeal lineages. The organisms are minor components of all biofilms growing in pH 0.5 to 1.5 solutions within the Richmond Mine, California. Probes specific for 16S rRNA showed that the fraction less than 0.45 micrometers in diameter is dominated by these organisms. Transmission electron microscope images revealed that the cells are pleomorphic with unusual folded membrane protrusions and have apparent volumes of < 0.006 cubic micrometer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite differences in their morphologies, comparative analyses of 16S rRNA gene sequences revealed high levels of similarity (> 94 %) between strains of the filamentous bacterium 'Candidatus Nostocoida limicola' and the cocci Tetrasphaera australiensis and Tetrasphaera japonica and the rod Tetrasphaera elongata, all isolated from activated sludge. These sequence data and their chemotaxonomic characters, including cell wall, menaquinone and lipid compositions and fingerprints of their 16S-23S rRNA intergenic regions, support the proposition that these isolates should be combined into a single genus containing six species, in the family Intrasporangiaceae in the Actinobacteria. This suggestion receives additional support from DNA-DNA hybridization data and when partial sequences of the rpoC1 gene are compared between these strains. Even though few phenotypic characterization data were obtained for these slowly growing isolates, it is proposed, on the basis of the extensive chemotaxonomic and molecular evidence presented here, that 'Candidatus N. limicola' strains Ben 17, Ben 18, Ben 67, Ben 68 and Ben 74 all be placed into the species Tetrasphaera jenkinsii sp. nov. (type strain Ben 74(T) = DSM 17519(T) = NCIMB 14128(T)), 'Candidatus N. limicola' strain Ben 70 into Tetrasphaera vanveenii sp. nov. (type strain Ben 70(T) = DSM 17518(T) = NCIMB 14127(T)) and 'Candidatus N. limicola' strains Ver 1 and Ver 2 into Tetrasphaera veronensis sp. nov. (type strain Ver 1(T) = DSM 17520(T) = NCIMB 14129(T)).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The isolation of spirochetes from severe ovine foot disease has been reported recently by our research group. In this study we describe the preliminary classification of this spirochete based on nucleotide sequence analysis of the PCR-amplified 16S rRNA gene. Phylogenetic analysis of this sequence in comparison with other previously reported 16S rRNA gene sequences showed that the spirochete belonged to the treponemal phylotype Treponema vincentii which has been associated with bovine digital dermatitis and human periodontal disease. Further work is required to define the common virulence determinants of these closely related treponemes in the aetiology of these tissue destructive diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The 16S rRNA genes from spirochaetes associated with digital dermatitis of British cattle were amplified by polymerase chain reaction from digital dermatitis lesion biopsies using one universal and one treponeme-specific primer. Two treponemal sequences were identified both of which shared a high degree of homology with the oral pathogen Treponema denticola (98%). Two further 16S rRNA gene sequences were obtained and shared similarity to Bacteroides levii (99%) and Mycoplasma hyopharyngis (98%). Polymerase chain reaction with T. denticola-specific primers amplified a potential virulence gene from digital dermatitis lesions which shared a high degree of homology to the 46-kDa haemolysin gene of T. denticola. The significance of the presence of organisms in digital dermatitis lesions of the bovine foot which are closely related to oral pathogens is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PCR with broad-range primers for prokaryotic 16S rRNA genes was used to identify bacterial DNA in tissue from patients undergoing valve replacements following a previous episode of infective endocarditis (IF). Of eight valves investigated, bacterial DNA was detected in three from patients for whom IE had been treated by antibiotic therapy 5, 12 and 18 months previously. The demonstration of bacterial DNA within resected heart valves suggests either recurrence of infection, treatment failure or the persistence of bacterial debris within the cardiac vegetation. There may also be implications for routine use of PCR in the diagnosis of infection. © 2004 Copyright by the European Society of Clinical Microbiology and Infectious Diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The surface microflora (902 isolates) of Livarot cheeses from three dairies was investigated during ripening. Yeasts were mainly identified by Fourier transform infrared spectroscopy. Geotrichum candidum was the dominating yeast among 10 species. Bacteria were identified using Biotype 100 strips, dereplicated by repetitive extragenic palindromic PCR (rep-PCR); 156 representative strains were identified by either BOX-PCR or (GTG) 55-PCR, and when appropriate by 16S rDNA sequencing and SDS-PAGE analysis. Gram-positive bacteria accounted for 65% of the isolates and were mainly assigned to the genera Arthrobacter, Brevibacterium, Corynebacterium, and Staphylococcus. New taxa related to the genera Agrococcus and Leucobacter were found. Yeast and Gram-positive bacteria strains deliberately added as smearing agents were sometimes undetected during ripening. Thirty-two percent of the isolates were Gram-negative bacteria, which showed a high level of diversity and mainly included members of the genera Alcaligenes, Hafnia, Proteus, Pseudomonas, and Psychrobacter. Whatever the milk used (pasteurized or unpasteurized), similar levels of biodiversity were observed in the three dairies, all of which had efficient cleaning procedures and good manufacturing practices. It appears that some of the Gramnegative bacteria identified should now be regarded as potentially useful in some cheese technologies. The assessment of their positive versus negative role should be objectively examined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyketides derived from dinoflagellates are among the most complex and unique structures identified to date. The carbon framework of all polyketides is assembled by a polyketide synthase (PKS). No studies of the biosynthesis of dinoflagellate derived polyketides at the genomic level have been reported to date. Nine strains representing seven different species of dinoflagellates were screened for the presence of type I and type II polyketide synthases (PKS) by PCR and RT-PCR. Seven of the nine strains yielded products that were homologous with known and putative type I polyketide synthases. In each case, the presence of a PKS gene was correlated with the presence of bacteria in the cultures as identified by amplification of the bacterial 16S rRNA gene. However, residual phylogenetic signals, resistance to methylation sensitive restriction enzymes and the lack of hybridization to bacterial isolates support a dinoflagellate origin for most of these genes. ^ A more detailed analysis of Karenia brevis, a toxic marine dinoflagellate endemic to the Gulf of Mexico, also supports the hypothesis that dinoflagellates have polyketide synthase genes. Blooms of this harmful alga cause fish kills, marine mammal mortalities and neurotoxic shellfish poisonings. These harmful effects are attributed to a suite of polyketide secondary metabolites known as the brevetoxins. PKS encoding genes amplified from K. brevis culture were found to be similar to PKS genes from the closely related protist, Cryptosporidium parvum. This suggested that these genes originate from the dinoflagellate. However, K. brevis has not been grown axenically. The associated bacteria might be the source of the toxins or the PKS genes. This dissertation reports the localization of these PKS encoding genes by a combination of flow cytometry/PCR and fluorescence in situ hybridization (FISH). Two genes localized exclusively to K. brevis cells while a third localized to both K. brevis and associated bacteria. While these genes have not yet been linked to toxin production, the work describes the first definitive evidence of resident PKS genes in any dinoflagellate. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antibiotics are becoming increasingly prevalent in bacterial communities due to clinical and agricultural misuse and overuse in their environment. As exposure increases, so does the incidence of microbial resistance. Such is the case with bacterial resistance to tetracyclines, a phenotype often acquired through the horizontal gene transfer of tet genes between bacteria. The objective of this project was to analyze the bacterial diversity of tet resistance genes in soil from Miami-Dade County. Bacterial isolates were Gram-stained and the Kirby-Bauer antibiotic disk diffusion test was performed to determine each bacterium’s degree of resistance. The 16S rRNA gene from antibiotic-resistant isolates was amplified by PCR and sequenced to identify the isolates. All isolates’ tet genes were amplified by multiplex PCR, sequenced, and compared. Among eight isolates, three distinct species were positively identified based on their 16S rRNA sequences and four distinct tet genes were identified, though all tested susceptible to tetracycline via the Kirby-Bauer test. This project clarifies some aspects of the ecology of antibiotic resistance genes, their natural ecological function and the potential for the expansion of intrinsic multi-antibiotic resistance into new ecosystems and/or hosts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antibiotic resistance has become an important area of research because of the excessive use of antibiotics in clinical and agricultural settings that are driving the evolution of antibiotic resistant bacteria. However, drug tolerance is a naturally occurring phenomenon in soil communities, and is often linked to those soils that are exposed to heavy metals as well as antibiotics. Resistance to antibiotics maybe coupled with resistance to heavy metals in soil bacteria through efflux pumps that can be regulated by iron. Although considered s a heavy metal, iron is an essential component of life that regulates gene expression through the Ferric Uptake Regulator (Fur) protein. This master regulator protein is known to control siderophore production, and other biological pathways. As a suspected controller of biofilm formation, the role of Fur in environmental antibiotic resistance may be greater than is currently realized. In this study, we sought to explore a potential Fur-regulated drug tolerance pathway by understanding the response of soil bacteria when stressed with oxytetracycline and iron. Bacteria were collected from two locations in Miami Dade County. Isolates were first tested using Kirby-Bauer Disk Diffusion tests for antibiotic resistance/susceptibility and identified by 16S rDNA sequencing. A 96-well growth assay was developed to measure planktonic cell growth with 3 mM FeCl3, Oxytetracycline HCl, and the combination treatments. A Microtiter Dish Biofilm Formation Assay was employed and Fur diversity was evaluated. Tetracycline-susceptible bacterial isolates developed drug resistance with iron supplementation, but iron did not enhance biofilm formation. Development of a Fur-dependent drug resistance may be selected for, but further study is required to evaluate Fur evolution in the studied isolates. Gene expression analysis is also needed to further understand the ecological role of Fur and antibiotic resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on our current knowledge about population genetics, phylogeography and speciation, we begin to understand that the deep sea harbours more species than suggested in the past. Deep-sea soft-sediment environment in particular hosts a diverse and highly endemic invertebrate fauna. Very little is known about evolutionary processes that generate this remarkable species richness, the genetic variability and spatial distribution of deep-sea animals. In this study, phylogeographic patterns and the genetic variability among eight populations of the abundant and widespread deep-sea isopod morphospecies Betamorpha fusiformis [Barnard, K.H., 1920. Contributions to the crustacean fauna of South Africa. 6. Further additions to the list of marine isopods. Annals of the South African Museum 17, 319-438] were examined. A fragment of the mitochondrial 16S rRNA gene of 50 specimens and the complete nuclear 18S rRNA gene of 7 specimens were sequenced. The molecular data reveal high levels of genetic variability of both genes between populations, giving evidence for distinct monophyletic groups of haplotypes with average p-distances ranging from 0.0470 to 0.1440 (d-distances: 0.0592-0.2850) of the 16S rDNA, and 18S rDNA p-distances ranging between 0.0032 and 0.0174 (d-distances: 0.0033-0.0195). Intermediate values are absent. Our results show that widely distributed benthic deep-sea organisms of a homogeneous phenotype can be differentiated into genetically highly divergent populations. Sympatry of some genotypes indicates the existence of cryptic speciation. Flocks of closely related but genetically distinct species probably exist in other widespread benthic deep-sea asellotes and other Peracarida. Based on existing data we hypothesize that many widespread morphospecies are complexes of cryptic biological species (patchwork hypothesis).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability of a previously PCB-enriched microbial culture from Venice Lagoon marine sediments to dechlorinate pentachlorophenol (PCP) and 2,3,5-trichlorophenol (2,3,5-TCP) was confirmed under anaerobic conditions in microcosms consisting of site water and sediment. Dechlorination activities against Aroclor 1254 PCB mixture were also confirmed as control. Pentachlorophenol was degraded to 2,4,6-TCP (75.92±0.85 mol%), 3,5-DCP (6.40±0.75 mol%), and phenol (15.40±0.87 mol%). From the distribution of the different dechlorination products accumulated in the PCP-spiked cultures over time, two dechlorination pathways for PCP were proposed: (i) PCP to 2,3,4,6-TeCP, then to 2,4,6-TCP through the removal of both meta double-flanked chlorine substituents (main pathway); (ii) alternately, PCP to 2,3,5,6-TeCP, 2,3,5-TCP, 3,5-DCP, then phenol, through the removal of the para double-flanked chlorine, followed by ortho single-flanked chlorines, and finally meta unflanked chlorines (minor pathway). Removal of meta double-flanked chlorines is thus preferred over all other substituents. 2,3,5-TCP, that completely lacks double-flanked chlorines, was degraded to 3,5-DCP through removal of the ortho single-flanked chlorine, with a 99.6% reduction in initial concentration of 2,3,5-TCP by week 14. 16S rRNA PCR-DGGE using Chloroflexi-specific primers revealed a different role of the two microorganisms VLD-1 and VLD-2, previously identified as dechlorinators in the Aroclor 1254 PCB-enriched community, in the dehalogenation of chlorophenols. VLD-1 was observed both in PCP- and TCP-dechlorinating communities, whereas VLD-2 only in TCP-dechlorinating communities. This indicates that VLD-1 and VLD-2 may both dechlorinate ortho single-flanked chlorines, but only VLD-1 is able to remove double-flanked meta or para chlorines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The skin is home to trillions of microbes, many of which are recently implicated in immune system regulation and various health conditions (33). The skin is continuously exposed to the outside environment, inviting microbial transfer between human skin and the people, animals, and surfaces with which an individual comes into contact. Thus, the aim of this study is to assess how different environmental exposures influence skin microbe communities, as this can strengthen our understanding of how microbial variation relates to health outcomes. This study investigated the skin microbial communities of humans and domesticated cattle living in rural Madagascar. The V3 region of the 16S rRNA gene was sequenced from samples of zebu (the domesticated cattle of Madagascar), zebu owners, and non-zebu owners. Overall, human armpits were the least diverse sample site, while ankles were the most diverse. The diversity of zebu samples was significantly different from armpits, irrespective of zebu ownership (one-way ANOVA and Tukey’s HSD, p<0.05). However, zebu owner samples (from the armpit, ankle forearm, and hand) were more similar to other zebu owner samples than they were to zebu, yet no more similar to other zebu owner samples than they were to non-zebu owner samples (unweighted UniFrac distances, p<0.05). These data suggest a lack of a microbial signature shared by zebu owners and zebu, though further taxonomic analysis is required to explain the role of additional environmental variables in dictating the microbial communities of various samples sites. Understanding the magnitude and directionality of microbial sharing has implications for a breadth of microbe-related health outcomes, with the potential to explain mosquito host preference and mitigate the threats of vector-borne diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the occurrence and activity of anaerobic ammonia oxidation (anammox) bacteria in sandy and muddy sand sediments of the southern North Sea. The presence of anammox bacteria was established through the detection of specific phosphocholine-monoether ladderane lipids, 16S rRNA gene, and hydrazine synthase (hzsA) genes. Anammox activity was measured in intact sediment cores (in situ rate) and in sediment slurries (potential rate) as the rate of N2 evolution from 15N-labeled substrates and compared to the transcriptional activity of genes of anammox bacteria. The contribution of anammox to N2 production ranged between 0% and 29%. The potential rate of anammox agreed well with the abundance of anammox bacteria 16S rRNA and hzsA gene copies and the transcriptional activity of the anammox bacteria 16S rRNA gene. We found a higher abundance and activity of anammox bacteria in sediments with higher organic carbon content and also higher activity in summer than in winter. The abundance of anammox bacteria and their potential anammox rates were similar to those reported for other marine coastal sediments, suggesting that potentially they are important contributors to the nitrogen cycle in sandy sediments of shallow continental shelf areas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microbial dinitrogen (N2) fixation, the nitrogenase enzyme-catalysed reduction of N2 gas into biologically available ammonia, is the main source of new nitrogen (N) in the ocean. For more than 50 years, oceanic N2 fixation has mainly been attributed to the activity of the colonial cyanobacterium Trichodesmium. Other smaller N2-fixing microorganisms (diazotrophs)-in particular the unicellular cyanobacteria group A (UCYN-A)-are, however, abundant enough to potentially contribute significantly to N2 fixation in the surface waters of the oceans. Despite their abundance, the contribution of UCYN-A to oceanic N2 fixation has so far not been directly quantified. Here, we show that in one of the main areas of oceanic N2 fixation, the tropical North Atlantic7, the symbiotic cyanobacterium UCYN-A contributed to N2 fixation similarly to Trichodesmium. Two types of UCYN-A, UCYN-A1 and -A2, were observed to live in symbioses with specific eukaryotic algae. Single-cell analyses showed that both algae-UCYN-A symbioses actively fixed N2, contributing ~20% to N2 fixation in the tropical North Atlantic, revealing their significance in this region. These symbioses had growth rates five to ten times higher than Trichodesmium, implying a rapid transfer of UCYN-A-fixed N into the food web that might significantly raise their actual contribution to N2 fixation. Our analysis of global 16S rRNA gene databases showed that UCYN-A occurs in surface waters from the Arctic to the Antarctic Circle and thus probably contributes to N2 fixation in a much larger oceanic area than previously thought. Based on their high rates of N2 fixation and cosmopolitan distribution, we hypothesize that UCYN-A plays a major, but currently overlooked role in the oceanic N cycle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The microbially mediated anaerobic oxidation of methane (AOM) is the major biological sink of the greenhouse gas methane in marine sediments (doi:10.1007/978-94-009-0213-8_44) and serves as an important control for emission of methane into the hydrosphere. The AOM metabolic process is assumed to be a reversal of methanogenesis coupled to the reduction of sulfate to sulfide involving methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) as syntrophic partners which were describes amongst others in Boetius et al. (2000; doi:10.1038/35036572). In this study, 16S rRNA-based methods were used to investigate the distribution and biomass of archaea in samples from sediments above outcropping methane hydrate at Hydrate Ridge (Cascadia margin off Oregon) and (ii) massive microbial mats enclosing carbonate reefs (Crimea area, Black Sea). Sediment samples from Hydrate Ridge were obtained during R/V SONNE cruises SO143-2 in August 1999 and SO148-1 in August 2000 at the crest of southern Hydrate Ridge at the Cascadia convergent margin off the coast of Oregon. The second study area is located in the Black Sea and represents a field in which there is active seepage of free gas on the slope of the northwestern Crimea area. Here, a field of conspicuous microbial reefs forming chimney-like structures was discovered at a water depth of 230 m in anoxic waters. The microbial mats were sampled by using the manned submersible JAGO during the R/V Prof. LOGACHEV cruise in July 2001. At Hydrate Ridge the surface sediments were dominated by aggregates consisting of ANME-2 and members of the Desulfosarcina-Desulfococcus branch (DSS) (ANME-2/DSS aggregates), which accounted for >90% of the total cell biomass. The numbers of ANME-1 cells increased strongly with depth; these cells accounted 1% of all single cells at the surface and more than 30% of all single cells (5% of the total cells) in 7- to 10-cm sediment horizons that were directly above layers of gas hydrate. In the Black Sea microbial mats ANME-1 accounted for about 50% of all cells. ANME-2/DSS aggregates occurred in microenvironments within the mat but accounted for only 1% of the total cells. FISH probes for the ANME-2a and ANME-2c subclusters were designed based on a comparative 16S rRNA analysis. In Hydrate Ridge sediments ANME-2a/DSS and ANME-2c/DSS aggregates differed significantly in morphology and abundance. The relative abundance values for these subgroups were remarkably different at Beggiatoa sites (80% ANME-2a, 20% ANME-2c) and Calyptogena sites (20% ANME-2a, 80% ANME-2c), indicating that there was preferential selection of the groups in the two habitats.