986 resultados para 10Me-C16:0
Resumo:
Ce6-xDyxMoO15-delta (0.0 <= x <= 1.8) were synthesized by modified sol-gel method. Structural and electrical properties were investigated by means of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The XRD patterns showed that the materials were single phase with a cubic fluorite structure. Impedance spectroscopy measurement in the temperature range between 350 degrees C and 800 degrees C indicated a sharp increase in conductivity for the system containing small amount of Dy2O3. The Ce5.6Dy0.4MoO15-delta detected to be the best conducting phase with the highest conductivity (sigma(t) = 8.93 x 10(-3) S cm(-1)) is higher than that of Ce5.6Sm0.4MoO15-delta (sigma(t) = 2.93 x 10(-3) S cm(-1)) at 800 degrees C, and the corresponding activation energy of Ce5.6Dy0.4MoO15-delta (0.994 eV) is lower than that of Ce5.6Sm0.4MoO15-delta (1.002 eV).
Resumo:
Microstructures and mechanical properties of the Mg-7Y-4Gd-xZn-0.4Zr (x = 0.5, 1.5, 3, and 5 wt.%) alloys in the as-cast, as-extruded, and peak-aged conditions have been investigated by using optical microscopy, scanning electron microscope, X-ray diffraction, and transmission electron microscopy. It is found that the peak-aged Mg-7Y-4Gd-1.5Zn-0.4Zr alloys have the highest strength after aging at 220 A degrees C. The highest ultimate tensile strength and yield tensile strength are 418 and 320 MPa, respectively. The addition of 1.5 wt.% Zn to the based alloys results in a greater aging effect and better mechanical properties at both room and elevated temperatures. The improved mechanical properties are mainly ascribed to both a fine beta' phase and a long periodic stacking-ordered structure, which coexist together in the peak-aged alloys.
Resumo:
A series of oxide ion conductors Ce6-xGdxMoO15-delta (0.0 <= x <= 1.8) have been prepared by the sol-gel method. Their properties were characterized by differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), Raman, IR, X-ray photoelectron spectroscopy (XPS), and AC impedance spectroscopy. The XRD patterns showed that the materials were single phase with a cubic fluorite structure. The conductivity of Ce6-xGdxMoO15-delta increases as x increases and reaches the maximum at x = 0.15. The conductivity of Ce4.5Gd1.5MoO15-delta is sigma(t) = 3.6 x 10(-3) S/cm at 700 degrees C, which is higher than that of Ce4.5/6Gd1.5/6O2-delta (sigma(t) = 2.6 x 10(-3) S/cm), and the corresponding activation energy of Ce4.5Gd1.5MoO15-delta (0.92 eV) is lower than that of Ce4.5/6Gd1.5/6O2-delta (1.18 eV).
Resumo:
Ce6-xHoxMoO15-delta(0.0 <= x <= 1.2) was synthesized by modified sol-gel method and characterized by differential X-ray diffraction(XRD), Raman, and X-ray photoelectron spectroscopy(XPS) methods. The oxide ionic conductivity of the samples was investigated by AC impedance spectroscopy. It shows that all the samples are single phase with a cubic fluorite structure. The solid solution Ce6-xHoxMoO15-delta(x=0.6) was detected to be the best conducting phase with the highest conductivity(sigma(t)=1.05x10(-2) S/cm) at 800 degrees C and the lowest activation energy(E-a=1.09 eV). These properties suggest that this kind of material has a potential application in intermediate-low temperature solid oxide fuel cells.
Resumo:
Starting from metal nitrate aqueous solutions and H3BO3, Y0.9-xGdxEu0.1Al3(BO3)(4) (0 <= x <= 0.9) phosphors were synthesized by spray pyrolysis followed by annealing at high temperature. The obtained phosphor particles have spherical morphology with size in the range 0.5-2 mu m. Independent of the x values in Y0.9-xGdxEu0.1Al3(BO3)(4) (0 <= x <= 0.9) phosphors, the Eu3+ ion shows its characteristic D-5(0), (1)-F-7(J) (J = 0, 1, 2, 3, 4) transitions with D-5(0)-F-7(2) red emission (612 nm) as the most prominent group. The photoluminescence intensity of phosphors increases with the increase of x value in Y0.9-xGdxEu0.1Al3(BO3)(4) (0 <= x <= 0.9) due to an energy migration process like Gd3+-(Gd3+)(n)-Eu3+ that occurred in the host materials.
Resumo:
Mg-8Gd-0.6Zr-xNd (x = 0, 1, 2 and 3 mass%) alloys were prepared by metal mould casting method, and the microstructures, age hardening responses and mechanical properties have been investigated. The microhardness of the as-cast alloys is increased with increasing Nd content. The age hardening behavior and mechanical properties are enhanced significantly by adding Nd element. The peak ageing hardness of the Mg-8Gd-0.6Zr-3Nd alloy is 103, it is about 1.3 times more than that of the Mg-8Gd-0.6Zr alloy. The aged Mg-8Gd-0.6Zr-3Nd alloy exhibits maximum ultimate tensile strength and yield strength, and the values are 271 and 205 MPa at room temperature, 205 MPa and 150 MPa at 250 degrees C, respectively. Which are about 2 times higher than those of Mg-8Gd-0.6Zr alloy. The improved hardness and strength are mainly attributed to the fine dispersiveness Of Mg5RE and Mg12RE precipitates in the alloy.
Resumo:
The aim of this work is to study the effect of Sr substitution on the redox properties and catalytic activity of La2-xSrxNiO4 (x = 0.0-1.2) for NO decomposition. Results suggest that the x = 0.6 sample shows the highest activity. The characterization (TPD, TPR, etc.) of samples indicates that the x = 0.6 sample possesses suitable abilities in both oxidation and reduction, which facilitates the proceeding of oxygen desorption and NO adsorption. At temperature below 700 degrees C, the oxygen desorption is difficult, and is the rate-determining step of NO decomposition. With the increase of reaction temperature (T > 700 degrees C), the oxygen desorption is favorable and, the active adsorption of NO on the active site (NO + V-o + Ni2+ -> NO--Ni3+) turns out to be the rate-determining step. The existence of oxygen vacancy is the prerequisite condition for NO decomposition, but its quantity does not relate much to the activity.
Resumo:
The structure and electrochemical properties of TiV1.1Mn0.9Nix (x = 0.1-0.7) solid solution electrode alloys have been investigated. It is found that these alloys mainly consist of a solid solution phase with body centered cubic (bcc) structure and a C14 Laves secondary phase. The solid solution alloys show easy activation behavior, high temperature dischargeability, high discharge capacity and favorable high-rate dischargeability as a negative electrode material in Ni-MH battery. The maximum discharge capacity is 502 mAh g(-1) at 303 K when x = 0.4. Electrochemical impedance spectroscopy (EIS) test shows that the charge-transfer resistance at the surface of the alloy electrodes decreases obviously with increasing Ni content.
Resumo:
The new compounds La2-xCaxMo1.7W0.3O9-delta (0 <= x <= 0.2) in which La3+ substituted with Ca2+ were synthesized by dry-chemistry techniques based on the oxygen Ionic conductor La2Mo1.7W0.3O9. The new series were characterized by X-ray Diffraction (XRD), Raman and X-ray Photoelectron Spectroscopy (XPS) and the electrical conductivity of samples were investigated by AC impedance spectroscopy. The lattice parameters were reduced due to the smaller atomic radius of the Ca2+ compared with that of the La3+. Furthermore, Additional oxygen vacancies were introduced into La2Mo1.7W0.3O9 lattice by substitution, and then the oxygen ionic conductivity was increased. At 550 degrees C, the conductivity increased 89.9%, that is, from 0.79 x 10(-4) S center dot cm(-1) (x=0) to 1.5 X 10(-4)S center dot cm(-1) (x=0.16, 0.2).
Resumo:
采用溶胶-凝胶法制备了不同烧结温度的钙钛矿类锰氧化物La0.67Sr0.33MnO3样品。实验结果表明,在1573 K以上烧结的样品,晶粒出现异常长大,晶界效应明显。随着烧结温度的提高,磁化强度逐渐增大,但样品的居里温度基本不变。此外,在1173和1573 K温度下烧结的样品,均出现了低于居里温度的金属-半导体导电行为转变。在合适的烧结条件下,可以观察到隧道磁电阻(TMR)和超大磁电阻(CMR)2种磁电阻效应。实验表明,自旋电子的输运,不仅与样品平均粒径的大小和密度有关,而且与晶界的微观结构有密切关系。
Resumo:
A new polyoxometalate [Co(phen)(3)](2)[HPMo4V Mo-4(VI) V-6(IV) M2O44]center dot 4H(2)O (M = 0.78Mo(V)+ 0.22V(IV)) 1 was hydrothermally synthesized and characterized by IR, elemental analyses, X-ray photoelectron spectrum, ESR and single crystal X-ray diffraction. The title compound is in the triclinic space group P (1) over bar with a = 12.0953(7) angstrom, b = 14.0182(6) angstrom, c = 14.6468(7) angstrom, V=2402.55(18) angstrom(3), alpha = 105.134(2), beta = 91.841(3), gamma = 91.401(2), Z = 1, and R-1 (wR(2)) = 0.0617 (0.1701). The compound was prepared from tetra-capped pseudo-Kepin with phosphorus-centered polyoxoanions [PMo8V6M2O44](5-) , [Co(phen)(3)](2+) cations and linked through hydrogen bonds and pi-pi stacking interaction into three-dimensional supramolecular framework. Astudy of the magnetic properties of 1 demonstrates that it exhibits antiferromagnetic coupling interactions.
Resumo:
A novel hard material of (W0.5Al0.5)C-0.5 has been successfully sintered under high-pressure (4.5 GPa). The influence of sintering time and temperature on the microstructure, Vickers microhardness and density of the as-prepared specimens are well described. Interestingly, sintering temperature has an amazing influence on the hardness, density and microstructure of the specimen while the sintering time does not. It is found that the most suitable sintering condition from our work is 1600 degrees C and 10 min under pressure of 4.5 GPa. The hardness and relative density of the as-prepared sample can reach 2340 kg mm(-2) and 98.62%, respectively. The cell parameters of the sintered specimen is found to be little smaller than that of the powder, which we propose is related to the high pressure.
Resumo:
We have investigated the structure, magnetization and magnetoresistance (MR) of the double perovskite compounds Sr2Fe1−xGaxMoO6 (0≤x≤0.25). Rietveld refinement results show that the anti-site defects (ASDs) concentration increases with x, giving rise to highly disordered samples at the B/B positions, for the highest doping levels. The evolution of bond lengths and ions oxidation states could be understood by the distribution of trivalent Ga ions at the B/B positions, which leads to the formation of more disorder structure. The saturation magnetization and Curie temperature decreased with the Ga content increases in the samples, and their origin was found that the cations disorder for the Ga-doped compounds is annihilating double exchange mechanism due to the presence of significant amounts of Fe and Ga cations on the B site. The low-field magnetoresistance of Sr2FeMoO6 (SFMO) can be greatly enhanced by replacing the Fe by the nonmagnetic Ga ion up to a temperature of 300 K,since Ga ions may act as a barrier for electron transport along the chain in the ferromagnetic segregation and weaken the ferromagnetic exchange.