997 resultados para 1088
Resumo:
Subwavelength resonators at FIR are presented and studied. The structures consist of 1D cavities formed between a metallized (silver) surface and a metamaterial surface comprising a periodic array of silver patches on a silver-backed silicon substrate. The concept derives from recent discoveries of artificial magnetic conductors (AMC). By studying the currents excited on the metamaterial surface by a normally incident plane wave, the nature of the emerging resonant phenomena and the physical mechanism underlying the AMC operation are investigated. Full wave simulations, based on finite element method and time-domain transmission line modelling technique, have been carried out to demonstrate the effective AMC boundary condition and prove the possibilities for subwavelength cavities. The quality factor of the resonant cavities is assessed as a function of the cavity profile. It is demonstrated that the quality factor drops to about 1/8 of the half-wavelength value for lambda/8 resonant cavity.
Resumo:
Planar periodic arrays of metallic elements printed on grounded dielectric substrates are presented to exhibit left-handed properties for surface wave propagation. The proposed structures dispense with the need for grounding vias and ease the implementation of uniplanar left-handed metamaterials at higher frequencies. A transmission line description is used for the initial design and interpretation of the left-handed property. A thorough study based on full wave simulations is carried out with regards to the effect of the element geometrical characteristics and the array periodicity to the properties of the artificial material. Dispersion curves are presented and studied. The distribution of the modal fields in the unit cell is also studied in order to provide an explanation of the material properties. The scalability of the proposed structures to infrared frequencies is demonstrated.
Resumo:
We present a new algorithm for vibrational control in deuterium molecules that is feasible with current experimental technology. A pump mechanism is used for creating a coherent superposition of the D-2(+) vibrations. A short, intense infrared control pulse is applied after a chosen delay time to create selective interferences. A 'chessboard' pattern of states can be realized in which a set of even- or odd-numbered vibrational states can be selectively annihilated or enhanced. A technique is proposed for experimental realization and observation of this effect using 5 fs pulses of lambda = 790 nm radiation, with intermediate intensity (5 x 10(13) W cm(-2)).
Resumo:
H-3(+) is the simplest triatomic molecule and plays an important role in laboratory and astrophysical plasmas. It is very stable both in terms of its electronic and nuclear degrees of freedom but is difficult to study in depth in the laboratory due to its ionic nature. In this communication, experimental results are presented for the strong field dissociation of the isotopic analogue D-3(+), using 30 fs, 800 nm laser pulses with intensities up to 10(16) W cm(-2). By employing a novel experimental set-up, ions were confined in an electrostatic ion trap so that dissociation of the molecule could be studied as it radiatively cools. It was determined that dissociation could only be observed for molecules in ro-vibrational states relatively close to the dissociation limit, while more tightly bound states demonstrated remarkable stability in even the strongest fields.
Resumo:
We study genuine multipartite entanglement (GME) in a system of n qubits prepared in symmetric Dicke states and subjected to the influences of noise. We provide general, setup-independent expressions for experimentally favorable tools such as fidelity- and collective spin-based entanglement witnesses, as well as entangled-class discriminators and multi-point correlation functions. Besides highlighting the effects of the environment on large qubit registers, we also discuss strategies for the robust detection of GME. Our work provides techniques and results for the experimental communities interested in investigating and characterizing multipartite entangled states by introducing realistic milestones for setup design and associated predictions.
Resumo:
We present a scheme for generating entanglement between two mechanical oscillators that have never interacted with each other by using an entanglement-swapping protocol. The system under study consists of a Michelson-Morley interferometer comprising mechanical systems embodied by two cantilevers. Each of them is coupled to a field mode via the radiation pressure mechanism. Entanglement between the two mechanical systems is set by measuring the output modes of the interferometer. We also propose a control mechanism for the amount of entanglement based on path-length difference between the two arms.
Resumo:
We present nine newly observed transits of TrES-3, taken as part of a transit timing program using the RISE instrument on the Liverpool Telescope. A Markov-Chain Monte Carlo analysis was used to determine the planet star radius ratio and inclination of the system, which were found to be R-p/R-star = 0.1664(-0.0018)(+0.0011) and i = 81.73(-0.04)(+0.13), respectively, consistent with previous results. The central transit times and uncertainties were also calculated, using a residual-permutation algorithm as an independent check on the errors. A re-analysis of eight previously published TrES-3 light curves was conducted to determine the transit times and uncertainties using consistent techniques. Whilst the transit times were not found to be in agreement with a linear ephemeris, giving chi(2) = 35.07 for 15 degrees of freedom, we interpret this to be the result of systematics in the light curves rather than a real transit timing variation. This is because the light curves that show the largest deviation from a constant period either have relatively little out-of-transit coverage or have clear systematics. A new ephemeris was calculated using the transit times and was found to be T-c(0) = 2454632.62610 +/- 0.00006 HJD and P = 1.3061864 +/- 0.0000005 days. The transit times were then used to place upper mass limits as a function of the period ratio of a potential perturbing planet, showing that our data are sufficiently sensitive to have probed sub-Earth mass planets in both interior and exterior 2:1 resonances, assuming that the additional planet is in an initially circular orbit.
Resumo:
In this paper we describe experimental results on angularly resolved x-ray scatter from a sample of warm dense aluminium that has been created by double sided laser-driven shock compression. The experiment was carried out on the Central Laser Facility of the Rutherford Appleton Laboratory, using the VULCAN laser. The form of the angularly resolved scatter cross-section was compared with predictions based on a series of molecular dynamics simulations with an embedded atom potential, a Yukakwa potential and a bare Coulomb potential. The importance of screening is evident from the comparison and the embedded atom model seems to match experiment better than the Yukawa potential.
Resumo:
An electrostatic trapping scheme for use in the study of light-induced dissociation of molecular ions is outlined. We present a detailed description of the electrostatic reflection storage device and specifically demonstrate its use in the preparation of a vibrationally cold ensemble of deuterium hydride (HD+) ions. By interacting an intense femtosecond laser with this target and detecting neutral fragmentation products, we are able to elucidate previously inaccessible dissociation dynamics for fundamental diatomics in intense laser fields. In this context, we present new results of intense field dissociation of HD+ which are interpreted in terms of recent theoretical calculations.
Resumo:
In this paper we report on our attempts to fit the optimal data selection (ODS) model (Oaksford Chater, 1994; Oaksford, Chater, & Larkin, 2000) to the selection task data reported in Feeney and Handley (2000) and Handley, Feeney, and Harper (2002). Although Oaksford (2002b) reports good fits to the data described in Feeney and Handley (2000), the model does not adequately capture the data described in Handley et al. (2002). Furthermore, across all six of the experiments modelled here, the ODS model does not predict participants' behaviour at the level of selection rates for individual cards. Finally, when people's probability estimates are used in the modelling exercise, the model adequately captures only I out of 18 conditions described in Handley et al. We discuss the implications of these results for models of the selection task and claim that they support deductive, rather than probabilistic, accounts of the task.
Resumo:
The results of an investigation into the damage caused to dry plasmid DNA after irradiation by fast (keV) hydrogen atoms are presented. Agarose gel electrophoresis was used to assess single and double strand break yields as a function of dose in dry DNA samples deposited on a mica substrate. Damage levels were observed to increase with beam energy. Strand break yields demonstrated a considerable dependence on sample structure and the method of sample preparation. Additionally, the effect of high-Z nanoparticles on damage levels was investigated by irradiating DNA samples containing controlled amounts of gold nanoparticles. In contrast to previous (photonic) studies, no enhancement of strand break yields was observed with the particles showing a slight radioprotective effect. A model of DNA damage as a function of dose has been constructed in terms of the probability for the creation of single and double strand breaks, per unit ion flux. This model provides quantitative conclusions about the effects of both gold nanoparticles and the different buffers used in performing the assays and, in addition, infers the proportion of multiply damaged fragments.
Resumo:
A scheme to obtain brilliant x-ray sources by coherent reflection of a counter-propagating pulse from laser-driven dense electron sheets is theoretically and numerically investigated in a self-consistent manner. A radiation pressure acceleration model for the dynamics of the electron sheets blown out from laser-irradiated ultrathin foils is developed and verified by PIC simulations. The first multidimensional and integral demonstration of the scheme by 2D PIC simulations is presented. It is found that the reflected pulse undergoes Doppler-upshift by a factor 4?z2, where ?z = (1- vz2/c2)-1/2 is the effective Lorentz factor of the electron sheet al ong its normal direction. Meanwhile the pulse electric field is intensified by a factor depending on the electron density of the sheet in its moving frame ne/?, where ? is the full Lorentz factor.