742 resultados para 1059
Resumo:
With the beginning of airline deregulations in 1978, U.S. domestic operations were in for a period of turmoil, adjustment, vibrancy, entrepreneurship, and change. A great deal has been written about the effects of deregulation on airlines and their personnel, and on the public at large. Less attention has been paid to the effects on travel agents and on the seminal role of computerized reservations systems (CRSs) in the flowering of travel agencies. This article examines both of these phenomena.
Resumo:
The physical habitat used during spawning may potentially be an important factor affecting reproductive output of broadcast spawning marine fishes, particularly for species with complex, substrate-oriented mating systems and behaviors, such as Atlantic cod Gadus morhua. We characterized the habitat use and behavior of spawning Atlantic cod at two locations off the coast of southwestern Iceland during a 2-d research cruise (15–16 April 2009). We simultaneously operated two different active hydroacoustic gear types, a split beam echosounder and a dual frequency imaging sonar (DIDSON), as well as a remotely operated underwater vehicle (ROV). A total of five fish species were identified through ROV surveys: including cusk Brosme brosme, Atlantic cod, haddock Melanogrammus aeglefinus, lemon sole Microstomus kitt, and Atlantic redfish Sebastes spp. Of the three habitats identified in the acoustic surveys, the transitional habitat between boulder/lava field and sand habitats was characterized by greater fish density and acoustic target strength compared to that of sand or boulder/lava field habitats independently. Atlantic cod were observed behaving in a manner consistent with published descriptions of spawning. Individuals were observed ascending 1–5 m into the water column from the bottom at an average vertical swimming speed of 0.20–0.25 m s−1 and maintained an average spacing of 1.0–1.4 m between individuals. Our results suggest that cod do not choose spawning locations indiscriminately despite the fact that it is a broadcast spawning fish with planktonic eggs that are released well above the seafloor.
Resumo:
Background Diabetes is a global epidemic. Cardiovascular disease (CVD) is one of the most prevalent consequences of diabetes. Nutrition is considered a modifiable risk factor for CVD, particularly for individuals with diabetes; albeit, there is little consensus on the role of carbohydrates, proteins and fats for arterial health for persons with or without diabetes. In this study, we examined the association of macronutrients with arterial pulse pressure (APP), a surrogate measure of arterial health by diabetes status and race. Methods Participants were 892 Mexican Americans (MA), 1059 Black, non-Hispanics (BNH) and 2473 White, non-Hispanics (WNH) with and without diabetes of a weighted sample from the National Nutrition and Health Examination Survey (NHANES) 2007-2008. The cross-sectional analysis was performed with IBM-SPSS version 18 with the complex sample analysis module. The two-year sample weight for the sub-sample with laboratory values was applied to reduce bias and approximate a nationally, representative sample. Arterial stiffness was assessed by arterial pulse pressure (APP). Results APP was higher for MA [B = 0.063 (95% CI 0.015 to 0.111), p = 0.013] and BNH [B = 0.044 (95% CI 0.006 to 0.082), p = 0.018] than WNH, controlling for diabetes, age, gender, body mass index (BMI), fiber intake, energy intake (Kcal) and smoking. A two-way interaction of diabetes by carbohydrate intake (grams) was inversely associated with APP [B = -1.18 (95% CI -0.178 to -0.058), p = 0.001], controlling for race, age, gender, BMI, Kcal and smoking. BNH with diabetes who consumed more mono-unsaturated fatty acids (MUFA) than WNH with diabetes had lower APP [B = -0.112 (95%CI-0.179 to -0.045), p = 0.003] adjusting for saturated fatty acids, Kcal, age, gender, BMI and smoking. Conclusion Higher MUFA and carbohydrate intake for persons with diabetes reflecting lower APP may be due to replacement of saturated fats with CHO and MUFA. The associations of APP with diabetes, race and dietary intake need to be confirmed with intervention and prospective studies. Confirmation of these results would suggest that dietary interventions for minorities with diabetes may improve arterial health.
Resumo:
Coral reefs are among the most productive ecosystems in the world. Yet, with their recent declines due to disease, climate change, and overfishing, restoration of these habitats is one of the main concerns for ecologists, resource managers, and government organizations. Coral reef restoration aims to promote key ecosystem processes to shift these habitats to their historical state of high coral cover, but few studies have focused on effective ways to promote resilience. In addition, little is known about the impact of restoration on the fish communities. The aim of this study is to understand how the community of herbivorous fishes is affected by the density of coral outplants inside a special protection area located in the Florida Keys National Marine Sanctuary. Grazing rates, number of visits and time spent foraging were compared using video footage of sites previously devoid of corals, and six months after coral restorations had occurred. Coral transplantations did not appear to attract herbivores nor increase grazing rates of fishes. Instead Sparisoma and Acanthurus fishes appear to respond to changes in the environment by modifying their grazing behavior. However, there was an observed increase in visits by Acanthurus species after transplantation for all the sites sampled within the reef. These fishes seemed to prefer low coral cover sites for grazing. This study highlights the importance of examining coral restorations impacts at the community level. Understanding how restoration influences herbivores and other guilds of reef fishes will allow individuals to not only determine if these habitats are returning to their “original” state, but provide more information on the ways these systems cope with changes in the environment.
Resumo:
Vol 17, Issue 37, 12 pages
Resumo:
This flyer promotes the event "Cartografía corporal, Book Presentation by Lillian Guerra, comments by Madeline Cámara Betancourt" sponsored by the School of International and Public Affairs at Florida International University. The event was held and Books & Books in Coral Gables.
Resumo:
The U.S. Department of Energy (DOE) needs a design basis to properly design a PJM and ventilation systems for the Waste Treatment Plant vessels. In order to meet DOE's needs for proper ventilation and PJM design technologies, Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) has studied the properties for gas holdup in selected non Newtonian fluids with physicochemical properties comparable to nuclear waste. The primary purpose of this research was to study the holdup properties of selected non - Newtonian simulants and quantify the level of gas holdup in selected simulants using continuous argon injection in five gallons vessel. Gas holdup tests involved the injection of gas bubbles in simulant waste in scaled prototypic vessels. The holdup was measured as a function of injection rate in the vessel. Tests were performed with both Laponite, Clay 12%, Clay 27% and Qard 13.5. This work showed that the percentage of holdup was about 3% for all simulants despite the significant differences in rheology.
Resumo:
Precise relative sea level (RSL) data are important for inferring regional ice sheet histories, as well as helping to validate numerical models of ice sheet evolution and glacial isostatic adjustment. Here we develop a new RSL curve for Fildes Peninsula, South Shetland Islands (SSIs), a sub-Antarctic archipelago peripheral to the northern Antarctic Peninsula ice sheet, by integrating sedimentary evidence from isolation basins with geomorphological evidence from raised beaches. This combined approach yields not only a Holocene RSL curve, but also the spatial pattern of how RSL change varied across the archipelago. The curve shows a mid-Holocene RSL highstand on Fildes Peninsula at 15.5 m above mean sea level between 8000 and 7000 cal a BP. Subsequently RSL gradually fell as a consequence of isostatic uplift in response to regional deglaciation. We propose that isostatic uplift occurred at a non-steady rate, with a temporary pause in ice retreat ca. 7200 cal a BP, leading to a short-lived RSL rise of ~1 m and forming a second peak to the mid-Holocene highstand. Two independent approaches were taken to constrain the long-term tectonic uplift rate of the SSIs at 0.22-0.48 m/ka, placing the tectonic contribution to the reconstructed RSL highstand between 1.4 and 2.9 m. Finally, we make comparisons to predictions from three global sea level models.
Resumo:
The introduction of phase change material fluid and nanofluid in micro-channel heat sink design can significantly increase the cooling capacity of the heat sink because of the unique features of these two kinds of fluids. To better assist the design of a high performance micro-channel heat sink using phase change fluid and nanofluid, the heat transfer enhancement mechanism behind the flow with such fluids must be completely understood. A detailed parametric study is conducted to further investigate the heat transfer enhancement of the phase change material particle suspension flow, by using the two-phase non-thermal-equilibrium model developed by Hao and Tao (2004). The parametric study is conducted under normal conditions with Reynolds numbers of Re=600-900 and phase change material particle concentrations ¡Ü0.25 , as well as extreme conditions of very low Reynolds numbers (Re < 50) and high phase change material particle concentration (0.5-0.7) slurry flow. By using the two newly-defined parameters, named effectiveness factor and performance index, respectively, it is found that there exists an optimal relation between the channel design parameters, particle volume fraction, Reynolds number, and the wall heat flux. The influence of the particle volume fraction, particle size, and the particle viscosity, to the phase change material suspension flow, are investigated and discussed. The model was validated by available experimental data. The conclusions will assist designers in making their decisions that relate to the design or selection of a micro-pump suitable for micro or mini scale heat transfer devices. To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann method is used because of its mesoscopic feature and its many numerical advantages. By using a two-component lattice Boltzmann model, the heat transfer enhancement of the nanofluid is analyzed, through incorporating the different forces acting on the nanoparticles to the two-component lattice Boltzmann model. It is found that the nanofluid has better heat transfer enhancement at low Reynolds numbers, and the Brownian motion effect of the nanoparticles will be weakened by the increase of flow speed.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
A combined record of three cores spanning the last 18 kyr from the northern North Sea is investigated for content of benthic and planktonic foraminifera and stable oxygen isotopes. The paleoenvironmental development through this time period shows an early deglaciation (18-14.4 ka) and the Younger Dryas (12.7-11.5 ka) characterized by arctic/polar conditions and increased ice rafting in the Norwegian Channel. During the Bølling-Allerød period, warm sea surface temperature (9°C) conditions similar to present conditions are inferred, while bottom waters stayed cold (0-1°C) with normal salinity. The Bølling-Allerød period is interrupted twice at 13.9-13.6 ka (Older Dryas) and at 13.0-12.8 ka (Inter-Allerød Cooling Period) by reductions in sea surface temperatures and increased sea ice cover. The beginning of the Holocene period is marked by increases in surface and bottom water temperature. Superimposed on the broad climatic changes through the Holocene, a series of short-lived oscillations in the ocean circulation are recorded. The amplitude of these Holocene events appears larger in the early Holocene (prior to 8 ka) than compared with the remaining part of the Holocene. This amplification can possibly be attributed to a general increased freshwater budget in the North Atlantic at this time during the final stages of the deglaciation of the Laurentide and Scandinavian ice sheets.
Resumo:
ix Ocean Drilling Program (ODP) sites, in the Northwest Atlantic have been used to investigate kinematic and chemical changes in the "Western Boundary Undercurrent" (WBUC) during the development of full glacial conditions across the Marine Isotope Stage 5a/4 boundary (~70,000 years ago). Sortable silt mean grain size(sort s) measurements are employed to examine changes in near bottom flow speeds, together with carbon isotopes measured in benthic foraminifera and % planktic foraminiferal fragmentation as proxies for changes in water-mass chemistry. A depth transect of cores, spanning 1.8-4.6 km depth, allows changes in both the strength and depth of the WBUC to be constrained across millennial scale events. Sort s measurements reveal that the flow speed structure of the WBUC during warm intervals ("interstadials") was comparable to modern (Holocene) conditions. However, significant differences are observed during cold intervals, with higher relative flow speeds inferred for the shallow component of the WBUC (~2 km depth) during all cold "stadial" intervals (including Heinrich Stadial 6), and a substantial weakening of the deep component (~3-4 km) during full glacial conditions. Our results therefore reveal that the onset of full glacial conditions was associated with a regime shift to a shallower mode of circulation (involving Glacial North Atlantic Intermediate Water) that was quantitatively distinct from preceding cold stadial events. Furthermore, our chemical proxy data show that the physical response of the WBUC during the last glacial inception was probably coupled to basin-wide changes in the water-mass composition of the deep Northwest Atlantic.