995 resultados para 10210953 TM-69
Resumo:
A standard biostratigraphic system, based upon diatom datum levels previously correlated to the paleomagnetic record, was applied to Deep Sea Drilling Project Sites 501/504 and 505. Sedimentation appears to have been constant at the three sites, averaging 50 m/m.y. at Sites 501/504 and 60 m/m.y. at Site 505. Calcium carbonate is rather poorly preserved at both sites, because of depth of water and, at Sites 501/504, alteration by diagenesis. Siliceous microfossils are common and moderately well preserved at the three sites; at Sites 501/504, diatoms disappear abruptly below the first occurrence of chert. The uppermost Miocene diatom assemblage occurs just above chert and is characterized by a strong dominance of Thalassionema and Thalassiothrix, which implies very high silica production during the latest Miocene; the chert probably is derived from a similar assemblage. In the earliest Pliocene, silica production appears to have decreased sharply; about 3 Ma, preservation of calcium carbonate also diminished, suggesting a shoaling of the CCD. At 2 Ma, there occurred a short interval of low production of both calcium carbonate and silica, which lasted into the earliest Pleistocene.
Resumo:
Values of physical properties measured in the upper sections of sediment cores recovered at Sites 504 and 505 exhibit a remarkable similarity. Below a depth of 145 m Site 504 sediments appear to have undergone changes which are reflected in physical property values. This alteration may have been due to high temperatures in the sediment. In most of Site 505, and in Site 504 above 145 m, seismic velocity averages 1.51 km/s, wet bulk density 1.32 g/cm**3, porosity 80%, and thermal conductivity 0.80% W/m °K. Below 145 m at Site 504 and 210 m at Site 505, mean density increases to 1.40 g/cm**3, porosity decreases to 67%, seismic velocity increases to 1.53 km/s, and thermal conductivity increases to values in excess of 1.0 W/m °K. A good correlation between independent measurements of water content and thermal resistivity supports the existence of small but regular variation in the measured parameters on the scale of 10 m and less.