948 resultados para 091207 Metals and Alloy Materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effective atomic number is widely employed in radiation studies, particularly for the characterisation of interaction processes in dosimeters, biological tissues and substitute materials. Gel dosimeters are unique in that they comprise both the phantom and dosimeter material. In this work, effective atomic numbers for total and partial electron interaction processes have been calculated for the first time for a Fricke gel dosimeter, five hypoxic and nine normoxic polymer gel dosimeters. A range of biological materials are also presented for comparison. The spectrum of energies studied spans 10 keV to 100 MeV, over which the effective atomic number varies by 30 %. The effective atomic numbers of gels match those of soft tissue closely over the full energy range studied; greater disparities exist at higher energies but are typically within 4 %.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium alloys are attracting increasing research interests due to their low density, high specific strength and good mechineability and availability as compared to other structural materials. However, the deformation and failure mechanisms of nanocrystalline Mg alloys have not been well understood. In this work, the deformation behavior of nanocrystalline Mg-5% Al alloys was investigated using compression test, with a focus on the effects of grain size. The average grain size of the Mg-Al alloy was changed from 13 µm to 50 nm via mechanical milling. The results showed that grain size had a significant influence on the yield stress and ductility of the Mg alloys, and the materials exhibited increased strain rate sensitivity with decrease of grain size. The deformation mechanisms were also strongly dependent with the grain sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early childhood teacher education programs have a responsibility, amongst many, to prepare teachers for decision-making on real world issues, such as child abuse and neglect. Their repertoire of skills can be enhanced by engaging with others, either face-to-face or online, in authentic problem-based learning. This paper draws on a study of early childhood student teachers who engaged in an authentic learning experience, which was to consider and to suggest how they would act upon a real-life case of child abuse encountered in an early childhood classroom in Queensland. This was the case of Toby (a pseudonym), who was suspected of being physically abused at home. Students drew upon relevant legislation, policy and resource materials to tackle Toby’s case. The paper provides evidence of students grappling with the complexity of a child abuse case and establishing, through collaboration with others, a proactive course of action. The paper has a dual focus. First, it discusses the pedagogical context in which early childhood student teachers deal with issues of child abuse and neglect in the course of their teacher education program. Second, it examines evidence of students engaging in collaborative problem-solving around issues of child abuse and neglect and teachers’ responsibilities, both legal and professional, to the children and families they work with. Early childhood policy-makers, practitioners and teacher educators are challenged to consider how early childhood teachers are best equipped to deal with child protection and early intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter will begin by considering some of the distinctive features of media as creative industries, including their assessment of risk and return on investment, team-based production, the management of creativity, the value chain of production, distribution and circulation, and the significance of intellectual property in their revenue strategies. It will then critically appraise three strategies to capture new markets and revenue streams in the context of the rise of the Internet, digital media and globally networked distribution. The three strategies to be considered are conglomeration, networking and globalization, and the focus will be on the media giants such as News Corporation, Disney and Time-Warner. It will be argued that all three present considerable challenges in their application, and digital media technologies are weakening rather than strengthening their capacity to control the global media environment. The chapter will conclude with consideration of some implications of this analysis for questions of media power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Design for Manufacturing (DFM) is a highly integral methodology in product development, starting from the concept development phase, with the aim of improving manufacturing productivity. It is used to reduce manufacturing costs in complex production environments, while maintaining product quality. While Design for Assembly (DFA) is focusing on elimination or combination of parts with other components, which in most cases relates to performing a function and manufacture operation in a simpler way, DFM is following a more holistic approach. Common consideration for DFM are standard components, manufacturing tool inventory and capability, materials compatibility with production process, part handling, logistics, tool wear and process optimization, quality control complexity or Poka-Yoke design. During DFM, the considerable background work required for the conceptual phase is compensated for by a shortening of later development phases. Current DFM projects normally apply an iterative step-by-step approach and eventually transfer to the developer team. The study is introducing a new, knowledge based approach to DFM, eliminating steps of DFM, and showing implications on the work process. Furthermore, a concurrent engineering process via transparent interface between the manufacturing engineering and product development systems is brought forward.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solids are widely identified as a carrier of harmful pollutants in stormwater runoff exerting a significant risk to receiving waters. This paper outlines the findings of an in-depth investigation on heavy metal adsorption to solids surfaces. Pollutant build-up samples collected from sixteen road sites in residential, industrial and commercial land uses were separated into four particle size ranges and analysed for a range of physico-chemical parameters and nine heavy metals including Iron (Fe), Aluminum (Al), Lead (Pb), Zinc (Zn), Cadmium (Cd), Chromium (Cr), Manganese (Mn), Nickel (Ni) and Copper (Cu). High specific surface area (SSA) and total organic carbon (TOC) content in finer particle size ranges was noted, thus confirming strong correlations with heavy metals. Based on their physico-chemical characteristics, two different types of solids originating from traffic and soil sources were identified. Solids generated by traffic were associated with high loads of heavy metals such as Cd and Cr with strong correlation with SSA. This suggested the existence of surface dependent bonds such as cation exchange between heavy metals and solids. In contrast, Fe, Al and Mn which can be attributed to soil inputs showed strong correlation with TOC suggesting strong bonds such as chemsorption. Zn was found to be primarily attached to solids by bonding with the oxides of Fe, Al and Mn. The data analysis also confirmed the predominance of the finer fraction, with 70% of the solids being finer than 150 µm and containing 60% of the heavy metal pollutant load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developing awareness of and maintaining interest in Korea and Korean culture for non-language secondary and tertiary students continues to challenge educators in Australia. A lack of appropriate and accessible creative and cultural materials is a key factor contributing to this challenge. In light of changes made to 'fair use' guidelines for the Digital Millennium Copyright Act in the United States in July 2010, and in order to prepare for a time in the near future when Australian copyright regulations might follow suit, this article offers a framework for utilizing film and digital media contents in the classroom. Case studies of the short digital animation film 'Birthday Boy' (2004) and the feature film The Divine Weapon (2008) are presented in order to illustrate new educational approaches to popular Korean films---the cinematic component of the 'Korean Wave' ('Hanryu' or 'Hallyu' in Korean). It is hoped that this work-in-progress will enable teachers to inspire students with limited language skills to learn more about Korean popular culture, history, and tradition as well as media, politics, and genre studies in dynamic ways through the use of films as cultural texts in the classroom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium alloys are attracting increasing research interests due to their low density, high specific strength, good machinability and availability as compared to other structural materials. However, the deformation and failure mechanisms of nanocrystalline (nc) Mg alloys have not been well understood. In this work, the deformation behaviour of nc Mg-5Al alloys was investigated using compression test, with focus on the effects of grain size. The average grain size of the Mg- Al alloy was changed from 13 to 50 nm via mechanical milling. The results showed that grain size had a significant influence on the yield stress and ductility of the Mg alloys, and the materials exhibited increased strain rate sensitivity with a decrease in grain size. The deformation mechanisms were also strongly dependent on the grain sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone defects, especially large bone defects, remain a major challenge in orthopaedic surgery. Autologous bone transplantation is considered the most effective treatment, but insufficient donor tissue, coupled with concerns about donor site morbidity, has hindered this approach in large-scale applications. Alternative approaches include implanting biomaterials such as bioactive glass (BG), which has been widely used for bone defect healing, due to having generally good biocompatibility, and can be gradually biodegraded during the process of new bone formation. Mesoporous bioactive glass (MBG) is a newly developed bioactive glass which has been proven to have enhanced in-vitro bioactivity; however the in-vivo osteogenesis has not been studied. A critical problem in using the bone tissue engineering approach to restore large bone defects is that the nutrient supply and cell viability at the centre of the scaffold is severely hampered since the diffusion distance of nutrients and oxygen for cell survival is limited to 150-200µm. Cobalt ions has been shown to mimic hypoxia, which plays a pivotal role in coupling angiogenesis with osteogenesis in-vivo by activating hypoxia inducing factor-1α (HIF-1α) transcription factor, subsequently initiating the expression of genes associated with tissue regeneration. Therefore, one aim of this study is to investigate the in-vivo osteogenesis of MBG by comparison with BG and β-TCP, which are widely used clinically. The other aim is to explore hypoxia-mimicking biomaterials by incorporating Cobalt into MBG and β-TCP. MBG and β-TCP incorporated with 5% cobalt (5Co-MBG and 5CCP) have also been studied in-vivo to determine whether the hypoxic effect has a beneficial effect on the bone formation. The composition and microstructure of synthesised materials (BG, MBG, 5Co-MBG, 5CCP) were characterised, along with the mesopore properties of the MBG materials. Dissolution and cytotoxicity of the Co-containing materials were also investigated. Femoral samples with defects harvested at 4 and 8 weeks were scanned using micro-CT followed by processing for histology (H&E staining) to determine bone formation. Histology of MBG showed a slower rate of bone formation at 4 weeks than BG, however at 8 weeks it could be clearly seen that MBG had more bone formation. The in-vivo results show that the osteogenesis of MBG reciprocates the enhanced performance shown in-vitro compared to BG. Dissolution study showed that Co ions can be efficiently released from MBG and β-TCP in a controllable way. Low amounts of Co incorporated into the MBG and β-TCP showed no significant cytotoxicity and the Co-MBG powders maintained a mesopore structure although not as highly ordered as pure MBG. Preliminary study has shown that Co incorporated samples showed little to no bone formation, instead incurring high lymphocyte activity. Further studies need to be done on Co incorporated materials to determine the cause for high lymphocyte activity in-vivo, which appear to hinder bone formation. In conclusion, this study demonstrated the osteogenic activity of MBG and provided some valuable information of tissue reaction to Co-incorporated MBG and TCP materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Open Educational Resources (OER) are teaching, learning and research materials that have been released under an open licence that permits online access and re-use by others. The 2012 Paris OER Declaration encourages the open licensing of educational materials produced with public funds. Digital data and data sets produced as a result of scientific and non-scientific research are an increasingly important category of educational materials. This paper discusses the legal challenges presented when publicly funded research data is made available as OER, arising from intellectual property rights, confidentiality and information privacy laws, and the lack of a legal duty to ensure data quality. If these legal challenges are not understood, addressed and effectively managed, they may impede and restrict access to and re-use of research data. This paper identifies some of the legal challenges that need to be addressed and describes 10 proposed best practices which are recommended for adoption to so that publicly funded research data can be made available for access and re-use as OER.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent times, light gauge steel frame (LSF) wall systems are increasingly used in the building industry. They are usually made of cold-formed and thin-walled steel studs that are fire-protected by two layers of plasterboard on both sides. A composite LSF wall panel system was developed recently, where an insulation layer was used externally between the two plasterboards to improve the fire performance of LSF wall panels. In this research, finite element thermal models of the new composite panels were developed using a finite element program, SAFIR, to simulate their thermal performance under both standard and Eurocode design fire curves. Suitable apparent thermal properties of both the gypsum plasterboard and insulation materials were proposed and used in the numerical models. The developed models were then validated by comparing their results with available standard fire test results of composite panels. This paper presents the details of the finite element models of composite panels, the thermal analysis results in the form of time-temperature profiles under standard and Eurocode design fire curves and their comparisons with fire test results. Effects of using rockwool, glass fibre and cellulose fibre insulations with varying thickness and density were also investigated, and the results are presented in this paper. The results show that the use of composite panels in LSF wall systems will improve their fire rating, and that Eurocode design fires are likely to cause severe damage to LSF walls than standard fires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene has attracted considerable interest over recent years due to its intrinsic mechanical, thermal and electrical properties. Incorporation of small quantity of graphene fillers into polymer can create novel nanocomposites with improved structural and functional properties. This review introduced the recent progress in fabrication, properties and potential applications of graphene-polymer composites. Recent research clearly confirmed that graphene-polymer nanocomposites are promising materials with applications ranging from transportation, biomedical systems, sensors, electrodes for solar cells and electromagnetic interference. In addition to graphene-polymer nanocomposites, this article also introduced the synergistic effects of hybrid graphene-carbon nanotubes (CNTs) on the properties of composites. Finally, some technical problems associated with the development of these nanocomposites are discussed.