961 resultados para Échangeur de chaleur Shell


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate here that the growth increment variability in the shell of the long-lived bivalve mollusc Arctica islandica can be interpreted as an indicator of marine environmental change in the climatically important North Atlantic shelf seas. Multi-centennial (up to 489-year) chronologies were constructed using five detrending techniques and their characteristics compared. The strength of the common environmental signal expressed in the chronologies was found to be fully comparable with equivalent statistics for tree-ring chronologies. The negative exponential function using truncated increment-width series from which the first thirty years have been removed was chosen as the optimal detrending technique. Chronology indices were compared with the Central England Temperature record and with seawater temperature records from stations close to the study site in the Irish Sea. Statistically significant correlations were found between the chronology indices and (a) mean air temperature for the 14-month period beginning in the January preceding the year of growth, (b) mean seawater temperatures for February-October in the year preceding the year of growth (c) late summer and autumn air temperatures and sea surface temperatures for the year of growth and (d) the timing of the autumn decline in SST. Changes through time in the correlations with air and seawater temperatures and changes towards a deeper water origin for the shells in the chronology were interpreted as an indication that shell growth may respond to stratification dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine invertebrates with open circulatory system establish low and constant oxygen partial pressure (Po2) around their tissues. We hypothesized that as a first step towards maintenance of low haemolymph and tissue oxygenation, the Po2 in molluscan mantle cavity water should be lowered against normoxic (21 kPa) seawater Po2, but balanced high enough to meet the energetic requirements in a given species. We recorded Po2 in mantle cavity water of five molluscan species with different lifestyles, two pectinids (Aequipecten opercularis, Pecten maximus), two mud clams (Arctica islandica, Mya arenaria), and a limpet (Patella vulgata). All species maintain mantle cavity water oxygenation below normoxic Po2. Average mantle cavity water Po2 correlates positively with standard metabolic rate (SMR): highest in scallops and lowest in mud clams. Scallops show typical Po2 frequency distribution, with peaks between 3 and 10 kPa, whereas mud clams and limpets maintain mantle water Po2 mostly <5 kPa. Only A. islandica and P. vulgata display distinguishable temporal patterns in Po2 time series. Adjustment of mantle cavity Po2 to lower than ambient levels through controlled pumping prevents high oxygen gradients between bivalve tissues and surrounding fluid, limiting oxygen flux across the body surface. The patterns of Po2 in mantle cavity water correspond to molluscan ecotypes.