824 resultados para vegetal fibre
Resumo:
A fully distributed temperature sensor consisting of a chirped fibre Bragg grating has been demonstrated. By fitting a numerical model of the grating response including temperature change, position and width of localized heating applied to the grating, we achieve measurements of these parameters to within 2.2 K, 149 µm and 306 µm of applied values, respectively. Assuming that deviation from linearity is accounted for in making measurement, much higher precision is achievable and the standard deviations for these measurements are 0.6 K, 28.5 µm and 56.0 µm, respectively.
Resumo:
Two-tone intermodulation tests were simulated for an amplitude modulated radio-on-fibre link including fibre dispersion, nonlinearity and loss. The third-order intercept results are presented for varying fibre lengths and optical transmission powers.
Resumo:
A technique for direct real-time assessment of a distributed feedback fibre laser cavity conditions during operation is demonstrated and used to provide a cavity mode conditioning feedback mechanism to optimise output performance. Negligible wavelength drift is demonstrated over a 52 mW pump power range.
Resumo:
We describe the results of in-vivo trials of a portable fiber Bragg grating based temperature profile monitoring system. The probe incorporates five Bragg gratings along a single fiber and prevents the gratings from being strained. Illumination is provided by a superluminescent diode, and a miniature CCD based spectrometer is used for demultiplexing. The CCD signal is read into a portable computer through a small A/D interface; the computer then calculates the positions of the center wavelengths of the Bragg gratings, providing a resolution of 0.2 °C. Tests were carried out on rabbits undergoing hyperthermia treatment of the kidney and liver via inductive heating of metallic implants and comparison was made with a commercial Fluoroptic thermometry system.
Resumo:
Error free propagation of a single polarisation optical time division multiplexed 40Gbit/s dispersion managed pulse data stream over 509km has been achieved in standard (non-dispersion shifted) fibre. Dispersion compensating fibre was used after each amplifier to reduce the high local dispersion of the standard fibre. © IEE 1999.
Resumo:
We show that by optimizing the amplifier position in a two-stage dispersion map, the (dispersion-managed) soliton-soliton interaction can be reduced, enabling transmission of 10-Gbits-1 solitons over standard fiber over 16,000 km
Resumo:
Error free transmission of a single polarisation optical time division multiplexed 40 Gbit/s dispersion managed pulse data stream over 1009 km has been achieved in a dispersion compensated standard (non-dispersion shifted) fibre. This distance is twice the previous record at this data rate, and was acheived through techniques developed for dispersion managed soliton transmission.
Resumo:
Error-free transmission of a single polarization optical time division multiplexed 40 Gbit/s dispersion managed pulse data stream over 1009 km has been achieved in dispersion-compensated standard (non-dispersion shifted) fibre. This distance is twice the previous record at this data rate.
Resumo:
We show experimentally and numerically that in high-speed strongly dispersion-managed standard fiber soliton systems nonlinear interactions limit the propagation distance. We present results that show that the effect of these interactions can be significantly reduced by appropriate location of the amplifier within the dispersion map. Using this technique, we have been able to extend the propagation distance of 10-Gbit/s 231–1pseudorandom binary sequence soliton data to 16, 500km over standard fiber by use of dispersion compensation. To our knowledge this distance is the farthest transmission over standard fiber without active control ever reported, and it was achieved with the amplifier placed after the dispersion-compensating fiber in a recirculating loop.
Resumo:
Over the last twenty years, we have been continuously seeing R&D efforts and activities in developing optical fibre grating devices and technologies and exploring their applications for telecommunications, optical signal processing and smart sensing, and recently for medical care and biophotonics. In addition, we have also witnessed successful commercialisation of these R&Ds, especially in the area of fibre Bragg grating (FBG) based distributed sensor network systems and technologies for engineering structure monitoring in industrial sectors such as oil, energy and civil engineering. Despite countless published reports and papers and commercial realisation, we are still seeing significant and novel research activities in this area. This invited paper will give an overview on recent advances in fibre grating devices and their sensing applications with a focus on novel fibre gratings and their functions and grating structures in speciality fibres. The most recent developments in (i) femtosecond inscription for microfluidic/grating devices, (2) tilted grating based novel polarisation devices and (3) dual-peak long-period grating based DNA hybridisation sensors will be discussed.
Resumo:
The microchannelled chirped fibre Bragg grating (MCFBG) was fabricated using femtosecond laser processing and HF-etching. Intrinsical refractive-index sensitivity induced by the microchannel makes MCFBGs ideal for biochemical sensing.
Resumo:
We demonstrate a liquid level sensor based on the surrounding medium refractive index (SRI) sensing using of an excessively tilted fibre Bragg grating (ETFBG). The sensor has low thermal cross sensitivity and high SRI responsivity.
Resumo:
We present the first experimental demonstration of a Raman fibre laser operation with a resolvable ~0.6 kHz mode spacing operating at 1551nm. Our laser has a record cavity length of 165 km.