867 resultados para value-mapping, corporate responsibility, urban infrastructure, construction innovation, corporate reporting
Corporate Social Responsibility within the Northern Ireland Construction Industry: A Regional Review
Resumo:
As the construction industry continues to struggle with a poor societal image, many organizations have adopted a positive corporate social responsibility (CSR) towards their surrounding environment, with the objective of improving their persona within social circles. The aim of this research is to identify and document the various approaches adopted by UK contractors in relation to their international counterparts to aid in the identification of possible future benefits which may be exploitable.
In order to acquire the relevant information, a number of qualitative methodologies are adopted including a review of the current literature on the topic along with a detailed semi-structured interview with a UK based industry professional that specializes in corporate social responsibility. Through assessing the findings using qualitative analysis software, it is possible to disseminate the information, resulting in the identification of key findings. This research concludes that a number of factors profoundly affect corporate social responsibility within the UK versus other regions. These factors are identified as the effect of the recession, implementation and reporting along with competitiveness within the sector.
The impaction for practice within the UK construction sector of this research is that it enables various industry leaders to actively consider the findings of the research while also vigorously encouraging the establishment and development of corporate social responsibility, not only within their respective organizations, but within the construction industry as a whole. This would not only result in a more environmentally sustainable industry, but would also raise the awareness of the sector locally, nationally and internationally, therefore improving the overall perception of the sector on a variety of levels. This will ultimately lead to a more sustainable, environmentally friendly and collective industry while also considering the needs of one of its most important external stakeholders – the local community.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
The rapid industrial development and disorganized population growth in huge cities bring about various urban problems due to intense use of physical space on and below the surface. Subsurface problems in metropolitan areas are caused by subway line construction, which often follows the routes of utility networks, such as electric and telephone cables, water and gas pipes, storm sewers, etc. Usually, the main problems are related to damage or destruction of preexisting utilities, often putting human lives at risk. With the purpose of minimizing risks. GPR-profiling with 200 MHz antennae was done at two sites, both located in downtown Sao Paulo, Brazil. The objectives of this work were to map utilities or existing infrastructure in the subsurface in order to orient the construction of the Line 4 (yellow) subway tunnel in Sao Paulo. GPR profiles can detect water pipes, utility networks in the subsurface, and concrete foundation columns or pilings in subsoil up to 2 m depth. In addition. the GPR profiles also provided details of the target shapes in the subsurface. GPR interpretations combined with lithological information from boreholes and trenches opened in the study areas were extremely important in mapping of the correct spatial distribution of buried utilities at these two sites in Sao Paulo. This information improves and updates maps of utility placement, serves as a basis for planning of the geotechnical excavation of the Line 4 (yellow) subway tunnel in Sao Paulo, helps minimize problems related to destruction of preexisting utilities in the subsoil, and avoids risk of dangerous accidents. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
From the very first steps to execute a building, it is essential to analyze its life cycle. Similarly, we should consider the life cycle when projecting an urban intervention. Professionals of the Facility Management take part in construction projects, developing and managing DBFMO projects (Design, Build, Finance, Maintenance & Operate). Whatever the nature of the promoter is – private or public – promoters are leaders in projects of responsible management of spaces, whether these are work spaces, leisure spaces or residential spaces. They know and identify with the company and its performance, its values and its needs. These professionals give sustainable solutions in the life cycle of buildings (offices and housing), new ways to work and initiatives of innovations linked to current social changes: technology, social networks, and new habits. Concepts where innovation is essential should consider responsible values. Social, economic and sustainable aspects have to associate with the management performed by a Facilities Manager when considering the three groups of stakeholders with which it is linked: economic (shareholders), contractual (users), non-contractual (neighborhoods, organizations, etc.). Marcus Vitruvius Pollio, at the beginning of his book "The Ten Books on Architecture" describes and argues how the distribution in buildings must always adapt to their inhabitants. Let us build cities and buildings with responsible criteria, bearing in mind all its users and the needs of each one of them. Not to mention the need to adapt to future requirements with minimum cost and maximum profitability. These needs, under responsible management, are competencies developed by a Facilities Manager in his day to day. He cares and takes over the entire life cycle of buildings and their surroundings. This work is part of the PhD project whose main aim is to study the added value to the architectural profession when social responsibility criteria are applied in his/her role as Facility Manager.
Resumo:
The role of sustainability in urban design is becoming increasingly important as Australia’s cities continue to grow, putting pressure on existing infrastructure such as water, energy and transport. To optimise an urban design many different aspects such as water, energy, transport, costs need to be taken into account integrally. Integrated software applications assessing urban designs on a large variety of aspects are hardly available. With the upcoming next generation of the Internet often referred to as the Semantic Web, data can become more machine-interpretable by developing ontologies that can support the development of integrated software systems. Software systems can use these ontologies to perform an intelligent task such as assessing an urban design on a particular aspect. When ontologies of different applications are aligned, they can share information resulting in interoperability. Inference such as compliancy checks and classifications can support aligning the ontologies. A proof of concept implementation has been made to demonstrate and validate the usefulness of machine interpretable ontologies for urban designs.
Resumo:
Purpose – Virtual prototyping technologies linked to building information models are commonplace within the aeronautical and automotive industries. Their use within the construction industry is now emerging. The purpose of this paper is to show how these technologies have been adopted on the pre-tender planning for a typical construction project. Design/methodology/approach – The research methodology taken was an “action research” approach where the researchers and developers were actively involved in the production of the virtual prototypes on behalf of the contractor thereby gaining consistent access to the decisions of the planning staff. The experiences from the case study were considered together with similar research on other construction projects. Findings – The findings from the case studies identify the role of virtual prototyping in components modelling, site modelling, construction equipment modelling, temporary works modelling, construction method visualization and method verification processes. Originality/value – The paper presents a state-of-the-art review and discusses the implications for the tendering process as these technologies are adopted. The adoption of the technologies will lead to new protocols and changes in the procurement of buildings and infrastructure.
Resumo:
Monitoring urban growth and land-use change is an important issue for sustainable infrastructure planning. Rapid urban development, sprawl and increasing population pressure, particularly in developing nations, are resulting in deterioration of infrastructure facilities, loss of productive agricultural lands and open spaces, pollution, health hazards and micro-climatic changes. In addressing these issues effectively, it is crucial to collect up-to-date and accurate data and monitor the changing environment at regular intervals. This chapter discusses the role of geospatial technologies for mapping and monitoring the changing environment and urban structure, where such technologies are highly useful for sustainable infrastructure planning and provision.
Resumo:
Survey results provide a preliminary assessment of the relative contribution of a range of tactical business strategies to innovation performance by firms in the Australian construction industry. Over 1,300 firms were surveyed in 2004, resulting in a response rate of 29%. Respondents were classified as high, medium or low innovators according to an innovation index based on the novelty and impact of their innovations and their adoption of listed technological and organizational advances. The relative significance of 23 business strategies concerning (1) employees, (2) marketing, (3) technology, (4) knowledge and (5) relationships was examined by determining the extent to which they distinguished high innovators from low innovators. The individual business strategies that most strongly distinguished high innovators were (1) ‘investing in R&D’, (2) ‘participating in partnering and alliances on projects’, (3) ‘ensuring project learnings are transferred into continuous business processes’, (4) ‘monitoring international best practice’, and (5) ‘recruiting new graduates’. Of the five types of strategies assessed, marketing strategies were the least significant in supporting innovation. The results provide practical guidance to managers in project-based industries wishing to improve their innovation performance.
Resumo:
Building for a sustainable environment requires sustainable infrastructure assets. Infrastructure capacity management is the process of ensuring optimal provision of such infrastructure assets. Effectiveness in this process will enable the infrastructure asset owners and its stakeholders to receive full value on their investment. Business research has shown that an organisation can only achieve business value when it has the right capabilities. This paradigm can also be applied to infrastructure capacity management. With limited access to resources, the challenge for infrastructure organisations is to identify and develop core capabilities to enable infrastructure capacity management. This chapter explores the concept of capability and identifies the core capability needed in infrastructure capacity management. Through a case study of the Port of Brisbane, this chapter shows that infrastructure organisations must develop their intelligence gathering capability to effectively manage the capacity of their infrastructure assets.
Resumo:
Purpose – The purpose of this paper is to develop a conceptual framework that can be used to identify capabilities needed in the management of infrastructure assets. Design/methodology/approach – This paper utilises a qualitative approach to analyse secondary data in order to develop a conceptual framework that identifies capabilities for strategic infrastructure asset management. Findings – In an external business environment that is undergoing rapid change, it is more appropriate to focus on factors internal to the organisation such as resources and capabilities as a basis to develop competitive advantage. However, there is currently very little understanding of the internal capabilities that are appropriate for infrastructure asset management. Therefore, a conceptual framework is needful to guide infrastructure organisations in the identification of capabilities. Research limitations/implications – This is a conceptual paper and future empirical research should be conducted to validate the propositions made in the paper. Practical implications – The paper clearly argues the need for infrastructure organisations to adopt a systematic approach to identifying the capabilities needed in the management of strategic infrastructure assets. The discussion on the impact of essential capabilities is useful in providing the impetus for managers who operate in a deregulated infrastructure business landscape to review their existing strategies. Originality/value – The paper provides a new perspective on how asset managers can create value for their organisations by investing in the relevant capabilities.
Resumo:
Purpose To identify the challenges faced by local government in Indonesia when adopting a Public Asset Management Framework. Design A Case Study in South Sulawesi Provincial Government was used as the approach to achieving the research objective. The case study involved two data collection techniques - interviews and document analysis. Findings The result of the study indicates there are significant challenges that the Indonesian local government need to manage when adopting a public asset management framework. Those challenges are: absence of an institutional and legal framework to support the asset management application; non-profit principle of public assets; multiple jurisdictions involved in the public asset management processes; the complexity of local government objectives; unavailability of data for managing public property; and limited human resources. Research Limitation This research is limited to one case study. It is a preliminary study from larger research that uses multiple case studies. The main research also investigates opportunities for local government by adopting and implementing public asset management. Originality/Value Findings from this study provide useful input for the policy makers, academics and asset management practitioners in Indonesia to establish a public asset management framework resulting in efficient and effective organizations, as well as an increase of public services quality. This study has a potential application for other developing countries.
Resumo:
The Government of Indonesia (GoI) increasingly relies on the private sector financing to build and operate infrastructures through public private partnership (PPP) schemes. However, PPP does not automatically provide the solution for the financing scheme due to value for money (VFM) issues. The procurement authority must show whether a PPP proposal is the optimal solution that provides best VFM outcome. The paper presents a literature review of comparing quantitative VFM methodology for PPP infrastructure project procurement in Indonesia and Australia. Public Sector Comparator (PSC) is used to assess the potential project VFM quantitatively in Australia. In Indonesia, the PSC has not been applied, where the PPP procurement authority tends to utilize a common project evaluation method that ignores the issues of risk. Unlike the conventional price bid evaluation, the PSC enables a financial comparison including costs/gains and risks. Since the construction of PSC is primarily on risk management approach, it can facilitate risk negotiation processes between the involved parties. The study indicates that the quantitative VFM methodology of PSC is potentially applicable in Indonesia for water supply sector. Various supporting regulations are available that emphasize the importance of VFM and risk management in infrastructure investment. However, the study also reveals a number of challenges that need to be anticipated, such as the need of a more comprehensive PPP policy at both central and local government level, a more specific legal instrument for bidding evaluation method and the issue of institutional capacity development in PPP Units at the local level.
Resumo:
While hybrid governance arrangements have been a major element of organisational architecture for some time, the contemporary operating environment has brought to the fore new conditions and expectations for the governance of entities that span conventional public sector departments, private firms and community organisations or groups. These conditions have resulted in a broader array of mixed governance configurations including Public Private Partnerships, alliances, and formal and informal collaborations. In some such arrangements, market based or ‘complete’ contractual relationships have been introduced to replace or supplement existing traditional ‘hierarchical’ and/or newer relational ‘network-oriented’ institutional associations. While there has been a greater reliance on collaborative or relational contracts as an underpinning institutional model, other modes of hierarchy and market may remain in operation. The success of these emergent hybrid forms has been mixed. There are examples of hybrids that have been well adopted, achieving the desired goals of efficiency, effectiveness and financial accountability; while others have experienced implementation problems which have undermined their results. This paper postulates that the cultural and institutional context within which hybrids operate may contribute to the implementation processes employed and the level of success attained. The paper explores hybrid arrangements through three cases of the use of inter-organisational arrangements in three different national contexts. Distilling the various elements of hybrids and the impact of institutional context will provide important insights for those charged with the responsibility for the formation and key infrastructure and public value development.