944 resultados para transient thermal distortion analysis
Resumo:
Fire resistance of light-gauge steel frame (LSF) walls can be enhanced by lining them with single or multiple layers of wall boards. This research is focused on the thermal per-formance of Magnesium Oxide (MgO) wall boards in comparison to the conventional gypsum plasterboards exposed to standard fire on one side. Thermal properties of MgO board and gypsum plasterboard were measured first and then used in the finite element heat transfer models of the two types of panels. The measured thermal property results show that MgO board will perform better than the gypsum plasterboards due to its higher specific heat values at elevated temperatures. However, MgO board loses 50% of its ini-tial mass at about 500 °C compared to 16% for gypsum plasterboard. The developed finite element models were validated using the fire test results of gypsum plasterboards and then used to study the thermal performance of MgO board panels. Finite element analysis re-sults show that when MgO board panels are exposed to standard fire on one side the rate of temperature rise on the ambient side is significantly reduced compared to gypsum plas-terboard. This has the potential to improve the overall thermal performance of MgO board lined LSF walls and their fire resistance levels (FRL). However, full scale fire tests are needed to confirm this. This paper presents the details of this investigation and the results.
Resumo:
STUDIES on potassium perchlorate/polystyrene (KP/PS) propellant systems have been carried out by using such techniques as thermogravimetry (TG), differential thermal analysis (DTA), and mass spectrometry (MS). It has been found that the thermal decomposition (TD) behavior of the KP/PS propellant is similar to that of the AP/PS propellant studied earlier.! It has also been observed that the TD of KP in the melt has a correlation with the burning rate (r) of KP/PS propellant at atmospheric pressure.
Resumo:
The integration of stochastic wind power has accentuated a challenge for power system stability assessment. Since the power system is a time-variant system under wind generation fluctuations, pure time-domain simulations are difficult to provide real-time stability assessment. As a result, the worst-case scenario is simulated to give a very conservative assessment of system transient stability. In this study, a probabilistic contingency analysis through a stability measure method is proposed to provide a less conservative contingency analysis which covers 5-min wind fluctuations and a successive fault. This probabilistic approach would estimate the transfer limit of a critical line for a given fault with stochastic wind generation and active control devices in a multi-machine system. This approach achieves a lower computation cost and improved accuracy using a new stability measure and polynomial interpolation, and is feasible for online contingency analysis.
Resumo:
Zinc film containing hexagonal plate stack and tower-like micro structures were grown on Si substrates at high temperature by thermal evaporation. Thermal oxidation studies on these micro structures have shown that ZnO nanoneedles selectively grow from the facets of the zinc microstructure at temperature above 300 degrees C in atmosphere TEM analysis showed that single crystalline and bicrystalline nanoneedles were formed in this oxidation process and the growth direction of these nanoneedles was identified along the [1 1 (2) overbar 0]. Based on the structural studies and morphological observation, we have proposed a possible mechanism for the selective growth of ZnO nanoneedles during thermal oxidation.
Resumo:
The interaction of transient electromagnetic field due to an NEMP with buried cables has been studied in this paper. The cables studied were of two types: shielded as well as unshielded cables. Using transmission line analysis, the induced voltage and current are computed at the load end of the cable for different soil conductivities, different depths of burial of cable and for different lengths of the cable. Effect of shielding on the induced voltage on the cable inner conductor as well as the dependence of the induced voltage on the shield thickness are also studied.
Resumo:
Structural, microstructural, and dielectric studies have been carried out on Pr-modified PbTiO3. A comparative analysis with La-modified PbTiO3 suggests that for chemical modification by same amount, the Pr-modified system has larger tetragonal strain and Curie point. No clear feature of relaxor ferroelectric state is observed for Pr concentration as high as x=0.35, suggesting that Pr modification is less effective, as compared to La-modification, in inducing a relaxor ferroelectric state. Results suggest that inspite of increased chemical disorder, Pr modification partly tends to restore the ferroelectric distortion of the lattice through partial occupancy of the Pr4+ ions on the Ti4+ sites.
Resumo:
Considered to be the next generation of heat transfer fluids, nanofluids have been receiving a growing amount of attention in the past decade despite the controversy and inconsistencies that have been reported. Nanofluids have great potential in a wide range of fields, particularly for solar thermal applications. This paper presents a comprehensive review of the literature on the enhancements in thermophysical and rheological properties resulting from experimental works conducted on molten salt nanofluids that are used in solar thermal energy systems. It was found that an increase in specific heat of 10–30% was achieved for most nanofluids and appeared independent of particle size and to an extent mass concentration. The specific heat increase was attributed to the formation of nanostructures at the solid–liquid interface and it was also noted that the aggregation of nanoparticles has detrimental effects on the specific heat increase. Thermal conductivity was also found to increase, though less consistently, ranging from 3% to 35%. Viscosity was seen to increase with the addition of nanoparticles and is dependent on the amount of aggregation of the particles. An in-depth micro level analysis of the mechanisms behind the thermophysical property changes is presented in this paper. In addition, possible trends are discussed relating to current theorised mechanisms in an attempt to explain the behaviour of molten salt nanofluids.
Resumo:
Peanut agglutinin is a homotetrameric nonglycosylated protein. The protein has a unique open quaternary structure. Molecular dynamics simulations have been employed follow the atomistic details of its unfolding at different temperatures. The early events of the deoligomerization of the protein have been elucidated in the present study. Simulation trajectories of the monomer as well as those of the tetramer have been compared and the tetramer is found to be substantially more stable than its monomeric counterpart. The tetramer shows retention of most of its.. secondary structure but considerable loss of the tertiary structure at high temperature. e generation of a This observation impies the molten globule-like intermediate in the later stages of deoligomerization. The quaternary structure of the protein has weakened to a large extent, but none of the subunits are separated. In addition, the importance of the metal-binding to the stability of the protein structure has also been investigated. Binding of the metal ions not only enhances the local stability of the metal-ion binding loop, but also imparts a global stability to the overall structure. The dynamics of different interfaces vary significantly as probed through interface clusters. The differences are substantially enhanced at higher temperatures. The dynamics and the stability of the interfaces have been captured mainly by cluster analysis, which has provided detailed information on the thermal deoligomerization of the protein.
Resumo:
Mo(Si1-xAlx)(2) compositions (x = 0-0.1) have been prepared by a modified SHS route under uniaxial hydrostatic pressure. Oxidation studies carried out by thermal analysis and sheet resistivity indicate an improvement in the low temperature (700-900 K) oxidation resistance with increasing aluminum addition. Dilatometric results show a decrease in the a value up to x = 0.05 substitution. With the aluminum substitution, both thermal expansion coefficient and thermal conductivity show decrease in their values except in the biphasic region. The x = 0.05 composition containing both C11(b) and C40 phases is a promising material for high temperature thermal barrier coating as it shows higher oxidation resistance and a similar K/alpha value as compared to pure MoSi, (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Transparent SrO-2B(2)O(3) (SBO) glasses were fabricated via the conventional melt-quenching technique. X-ray diffraction (XRD) and differential thermal analysis (DTA) studies carried out on the as-quenched glasses confirmed their amorphous and glassy nature, respectively. The thermal parameters were evaluated for the as-quenched glass-plates using non-isothermal DTA experiments. The average values of the activation energies for the glass transition and crystallization of these glasses were 800 +/- 10 kJ/mol and 298 +/- 10 kJ/mol respectively. The values of the kinetic parameters that were obtained by different non-isothermal techniques were in close agreement.
Resumo:
This paper presents a complete asymptotic analysis of a simple model for the evolution of the nocturnal temperature distribution on bare soil in calm clear conditions. The model is based on a simplified flux emissivity scheme that provides a nondiffusive local approximation for estimating longwave radiative cooling near ground. An examination of the various parameters involved shows that the ratio of the characteristic radiative to the diffusive timescale in the problem is of order 10(-3), and can therefore be treated as a small parameter (mu). Certain other plausible approximations and linearization lead to a new equation whose asymptotic solution as mu --> 0 can be written in closed form. Four regimes, consishttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=27192&stage=core#tting of a transient at nominal sunset, a radiative-diffusive boundary ('Ramdas') layer on ground, a boundary layer transient and a radiative outer solution, are identified. The asymptotic solution reproduces all the qualitative features of more exact numerical simulations, including the occurrence of a lifted temperature minimum and its evolution during night, ranging from continuing growth to relatively sudden collapse of the Ramdas layer.
Resumo:
Lignin was graft copolymerized with methyl methacrylate using manganic pyrophosphate as initiator. This modified lignin was then blended (up to 50 wt%) with low density polyethylene (LDPE) using a small quantity of poly[ethylene-co-(glycidyl methacrylate)] (PEGMA) compatibilizer. The mechanical properties of the blend were substantially improved by using modified lignin in contrast to untreated lignin. Differential scanning calorimetry studies showed loss of crystallinity of the LDPE phase owing to the interaction between the blend components. Thermogravimetric analysis showed higher thermal stability of modified lignin in the domain of blend processing. This suggested that there is scope for useful utilization of lignin, which could also lead to the development of eco-friendly products. (c) 2005 Society of Chemical Industry.
Resumo:
A new equation for predicting the thermal conductivities of organic liquids using dimension-less analysis is given. The equation (Equation Presented) correlates 51 different liquids tested within 11% average error and 17% standard deviation. A comparison of the proposed equation with the available correlations and its application to some industrially important liquids show that this equation can be safely used to calculate the thermal conductivities at 20°C. and 1 atm. pressure for organic liquids of known molecular weight. Cp and ΔHv - the only two parameters for which experimental values must be known for making use of this equation - can be calculated using other well known correlations. The proposed equation is not applicable to inorganic liquids.
Resumo:
The preparation of three different types of carbonates of praseodymium, neodymium and terbium has been described. The carbonates have been characterized by potentiometry, chemical analysis, X-ray crystallography, infra-red spectroscopy and by their thermal behaviour. The thermal decomposition of several carbonates has been studied exhaustively under a variety of conditions and the stoicheiometry, thermodynamics and energetics of the reactions at various stages of decomposition have been examined. The stoicheiometry of the oxides obtained as final products of decomposition has been examined.
Resumo:
Temperature-time characteristics of tungsten filaments heated electrically under constant voltage in vacuum have been analysed. The analysis is carried out over the temperature range 300-2500°K, taking into account the actual variations with temperature of the various parameters involved, as reported by Jones and Langmuir (1927). The analysis leads to the conclusion that the temperature-time relationship is exponential throughout the range. The time constant is shown to be proportional to the diameter of the filament and T f-4.2 where Tf is the final temperature of the filament. The results of the analysis are applied to derive the voltage variations (continuous and discrete types) required to keep the transient current within specified limits during the rapid switching on of filaments as met with in high power thermionic valves.