927 resultados para transcription factor 7 like 2
Resumo:
The general objective of this work is to analyze the regulatory processes underlying flowering transition and inflorescence and flower development in grapevine. Most of these crucial developmental events take place within buds growing during two seasons in two consecutive years. During the first season, the shoot apical meristem within the bud differentiates all the basic elements of the shoot including flowering transition in lateral primordia and development of inflorescence primordia. These events practically end with bud dormancy. The second season, buds resume shoot growth associated to flower formation and development. In grapevine, the lateral meristems can give rise either to tendril or inflorescence primordia that are homologous organs. With this purpose, we performed global transcriptome analyses along the bud annual cycle and during inflorescence and tendril development. In addition, we approach the genomic analysis of the MIKC type MADS-box gene family in grapevine to identify all its members and assign them putative biological functions. Regarding buds developmental cycle, the results indicate that the main factors explaining the global gene expression differences were the processes of bud dormancy and active growth as well as stress responses. Non dormant buds exhibited up-regulation in functional categories typical of actively proliferating and growing cells (photosynthesis, cell cycle regulation, chromatin assembly) whereas in dormant ones the main functional categories up-regulated were associated to stress response pathways together with transcripts related to starch catabolism. Major transcriptional changes during the dormancy period were associated to the para/endodormancy, endo/ecodormancy and ecodormancy/bud break transitions. Global transcriptional analyses along tendril and inflorescence development suggested that these two homologous organs share a common transcriptional program related to cell proliferation functions. Both structures showed a progressive decrease in the expression of categories such as cell-cycle, auxin metabolism/signaling, DNA metabolism, chromatin assembly and a cluster of five transcripts belonging to the GROWTH-REGULATING FACTOR (GRF) transcription factor family, that are known to control cell proliferation in other species and determine the size of lateral organs. However, they also showed organ specific transcriptional programs that can be related to their differential organ structure and function. Tendrils showed higher transcription of genes related to photosynthesis, hormone signaling and secondary metabolism than inflorescences, while inflorescences have higher transcriptional activity for genes encoding transcription factors (especially those belonging to the MADS-box gene family). Further analysis along inflorescence development evidenced the relevance of additional functions likely related to processes of flower development such as fatty acid and lipid metabolism, jasmonate signaling and oxylipin biosynthesis. The transcriptional analyses performed highlighted the relevance of several groups of transcriptional regulators in the developmental processes studied. The expression profiles along bud development revealed significant differences for some MADS-box subfamilies in relation to other plant species, like the members of the FLC and SVP subfamilies suggesting new roles for these groups in grapevine. In this way, it was found that VvFLC2 and VvAGL15.1 could participate, together with some members of the SPL-L family, in dormancy regulation, as was shown for some of them in other woody plants. Similarly, the expression patterns of the VvFLC1, VvFUL, VvSOC1.1 (together with VvFT, VvMFT1 and VFL) genes could indicate that they play a role in flowering transition in grapevine, in parallel to their roles in other plant systems. The expression levels of VFL, the grapevine LEAFY homolog, could be crucial to specify the development of inflorescence and flower meristems instead of tendril meristems. MADS-box genes VvAP3.1 and 2, VvPI, VvAG1 and 3, VvSEP1-4, as well as VvBS1 and 2 are likely associated with the events of flower meristems and flower organs differentiation, while VvAP1 and VvFUL-L (together with VvSOC1.1, VvAGL6.2) could be involved on tendril development given their expression patterns. In addition, the biological function ofVvAP1 and VvTFL1A was analyzed using a gene silencing approach in transgenic grapevine plants. Our preliminary results suggested a possible role for both genes in the initiation and differentiation of tendrils. Finally, the genomic analysis of the MADS-box gene family in grapevine revealed differential features regarding number and expression pattern of genes putatively involved in the flowering transition process as compared to those involved in the specification of flower and fruit organ identity. Altogether, the results obtained allow identifying putative candidate genes and pathways regulating grapevine reproductive developmental processes paving the way to future experiments demonstrating specific gene biological functions. RESUMEN El objetivo general de este trabajo es analizar los procesos regulatorios subyacentes a la inducción floral así como al desarrollo de la inflorescencia y la flor en la vid. La mayor parte de estos eventos cruciales tienen lugar en las yemas a lo largo de dos estaciones de crecimiento consecutivas. Durante la primera estación, el meristemo apical contenido en la yema diferencia los elementos básicos del pámpano, lo cual incluye la inducción de la floración en los meristemos laterales y el subsiguiente desarrollo de primordios de inflorescencia. Estos procesos prácticamente cesan con la entrada en dormición de la yema. En la segunda estación, se reanuda el crecimiento del pámpano acompañado por la formación y desarrollo de las flores. En la vid, los meristemos laterales pueden dar lugar a primordios de inflorescencia o de zarcillo que son considerados órganos homólogos. Con este objetivo llevamos a cabo un estudio a nivel del transcriptoma de la yema a lo largo de su ciclo anual, así como a lo largo del desarrollo de la inflorescencia y del zarcillo. Además realizamos un análisis genómico de la familia MADS de factores transcripcionales (concretamente aquellos del tipo MIKC) para identificar todos sus miembros y tratar de asignarles posibles funciones biológicas. En cuanto al ciclo de desarrollo de la yema, los resultados indican que los principales factores que explican las diferencias globales en la expresión génica fueron los procesos de dormición de la yema y el crecimiento activo junto con las respuestas a diversos tipos de estrés. Las yemas no durmientes mostraron un incremento en la expresión de genes contenidos en categorías funcionales típicas de células en proliferación y crecimiento activo (como fotosíntesis, regulación del ciclo celular, ensamblaje de cromatina), mientras que en las yemas durmientes, las principales categorías funcionales activadas estaban asociadas a respuestas a estrés, así como con el catabolismo de almidón. Los mayores cambios observados a nivel de transcriptoma en la yema coincidieron con las transiciones de para/endodormición, endo/ecodormición y ecodormición/brotación. Los análisis transcripcionales globales a lo largo del desarrollo del zarcillo y de la inflorescencia sugirieron que estos dos órganos homólogos comparten un programa transcripcional común, relacionado con funciones de proliferación celular. Ambas estructuras mostraron un descenso progresivo en la expresión de genes pertenecientes a categorías funcionales como regulación del ciclo celular, metabolismo/señalización por auxinas, metabolismo de ADN, ensamblaje de cromatina y un grupo de cinco tránscritos pertenecientes a la familia de factores transcripcionales GROWTH-REGULATING FACTOR (GRF), que han sido asociados con el control de la proliferación celular y en determinar el tamaño de los órganos laterales en otras especies. Sin embargo, también pusieron de manifiesto programas transcripcionales que podrían estar relacionados con la diferente estructura y función de dichos órganos. Los zarcillos mostraron mayor actividad transcripcional de genes relacionados con fotosíntesis, señalización hormonal y metabolismo secundario que las inflorescencias, mientras que éstas presentaron mayor actividad transcripcional de genes codificantes de factores de transcripción (especialmente los pertenecientes a la familia MADS-box). Análisis adicionales a lo largo del desarrollo de la inflorescencia evidenciaron la relevancia de otras funciones posiblemente relacionadas con el desarrollo floral, como el metabolismo de lípidos y ácidos grasos, la señalización mediada por jasmonato y la biosíntesis de oxilipinas. Los análisis transcripcionales llevados a cabo pusieron de manifiesto la relevancia de varios grupos de factores transcripcionales en los procesos estudiados. Los perfiles de expresión estudiados a lo largo del desarrollo de la yema mostraron diferencias significativas en algunas de las subfamilias de genes MADS con respecto a otras especies vegetales, como las observadas en los miembros de las subfamilias FLC y SVP, lo cual sugiere que podrían desempeñar nuevas funciones en la vid. En este sentido, se encontró que los genes VvFLC2 y VvAGL15.1 podrían participar, junto con algunos miembros de la familia SPL-L, en la regulación de la dormición. De un modo similar, los patrones de expresión de los genes VvFLC1, VvFUL, VvSOC1.1 (junto con VvFT, VvMFT1 y VFL) podría indicar que desempeñan un papel en la regulación de la inducción de la floración en la vid, como se ha observado en otros sistemas vegetales. Los niveles de expresión de VFL, el homólogo en vid del gen LEAFY de A. thaliana podrían ser cruciales para la especificación del desarrollo de meristemos de inflorescencia y flor en lugar de meristemos de zarcillo. Los genes VvAP3.1 y 2, VvPI, VvAG1 y 3, VvSEP1-4, así como VvBS1 y 2 parecen estar asociados con los eventos de diferenciación de meristemos y órganos florales, mientras que VvAP1 y VvFUL-L (junto con VvSOC1.1 y VvAGL6.2) podrían estar implicados en el desarrollo del zarcillo dados sus patrones de expresión. Adicionalmente, se analizó la función biológica de los genes VvAP1 y VvTFL1A por medio de una estrategia de silenciamiento génico. Los datos preliminares sugieren un posible papel para ambos genes en la iniciación y diferenciación de los zarcillos. Finalmente, el análisis genómico de la familia MADS en vid evidenció diferencias con respecto a otras especies vegetales en cuanto a número de miembros y patrón de expresión en genes supuestamente implicados en la inducción de la floración, en comparación con aquellos relacionados con la especificación de identidad de órganos florales y desarrollo del fruto. En conjunto, los resultados obtenidos han permitido identificar posibles rutas y genes candidatos a participar en la regulación de los procesos de desarrollo reproductivo de la vid, sentando las bases de futuros experimentos encaminados a conocer la funciones biológicas de genes específicos.
Resumo:
Protein hydrolysis plays an important role during seed germination and post-germination seedling establishment. In Arabidopsis thaliana, cathepsin B-like proteases are encoded by a gene family of three members, but only the AtCathB3 gene is highly induced upon seed germination and at the early post-germination stage. Seeds of a homozygous T-DNA insertion mutant in the AtCathB3 gene have, besides a reduced cathepsin B activity, a slower germination than the wild type. To explore the transcriptional regulation of this gene, we used a combined phylogenetic shadowing approach together with a yeast one-hybrid screening of an arrayed library of approximately 1200 transcription factor open reading frames from Arabidopsis thaliana. We identified a conserved CathB3-element in the promoters of orthologous CathB3 genes within the Brassicaceae species analysed, and, as its DNA-interacting protein, the G-Box Binding Factor1 (GBF1). Transient overexpression of GBF1 together with a PAtCathB3::uidA (β-glucuronidase) construct in tobacco plants revealed a negative effect of GBF1 on expression driven by the AtCathB3 promoter. In stable P35S::GBF1 lines, not only was the expression of the AtCathB3 gene drastically reduced, but a significant slower germination was also observed. In the homozygous knockout mutant for the GBF1 gene, the opposite effect was found. These data indicate that GBF1 is a transcriptional repressor of the AtCathB3 gene and affects the germination kinetics of Arabidopsis thaliana seeds. As AtCathB3 is also expressed during post-germination in the cotyledons, a role for the AtCathB3-like protease in reserve mobilization is also inferred.
Resumo:
Gibberellins (GAs) are plant hormones that affect plant growth and regulate gene expression differentially across tissues. To study the molecular mechanisms underlying GA signaling in Arabidopsis thaliana, we focused on a GDSL lipase gene (LIP1) induced by GA and repressed by DELLA proteins. LIP1 contains an L1 box promoter sequence, conserved in the promoters of epidermis-specific genes, that is bound by ATML1, an HD-ZIP transcription factor required for epidermis specification. In this study, we demonstrate that LIP1 is specifically expressed in the epidermis and that its L1 box sequence mediates GA-induced transcription. We show that this sequence is overrepresented in the upstream regulatory regions of GA-induced and DELLA-repressed transcriptomes and that blocking GA signaling in the epidermis represses the expression of L1 box–containing genes and negatively affects seed germination. We show that DELLA proteins interact directly with ATML1 and its paralogue PDF2 and that silencing of both HD-ZIP transcription factors inhibits epidermal gene expression and delays germination. Our results indicate that, upon seed imbibition, increased GA levels reduce DELLA protein abundance and release ATML1/PDF2 to activate L1 box gene expression, thus enhancing germination potential.
Resumo:
The incidence of inflammatory and autoimmune diseases has increased among developed countries in the past 30 years, creating a demand for the development of effective and economic therapies for these diseases. Interleukin 23 (IL-23) is a pro-inflammatory cytokine whose increased production has been shown to play a key role in the establishment and maintenance of inflammatory and autoimmune diseases in different murine models such as inflammatory bowel disease, psoriasis and experimental autoimmune encephalomyelitis. More importantly, increased levels of IL-23 have been found in biopsies from patients with Crohn’s disease and ulcerative colitis, and psoriasis. The pathological consequences of excessive IL-23 signalling have been linked to its ability to promote the production of interleukin 17 (IL-17), particularly in the subpopulation of CD4 T cells Th17. However, the precise molecular mechanisms by which IL-23 sustains the Th17 response and induces pathogenic effector functions in these cells remain largely unknown. The global objective of the experiments carried out in this work was to determine the effect of IL-23 on the proliferation, survival and IL-17 and interferon gamma (IFN-ɣ) production in Th17 cells. These experiments have shown that IL-23 does not promote proliferation or survival of in vitro generated Th17 cells, and that there is no difference in the production of IL -17 in the absence or presence of IL -23. The IL-23 receptor, like other cytokine receptors, lacks intrinsic enzymatic activity. Instead, IL-23 receptor associates with members of the Janus tyrosine kinase family (Jaks). Cytokine binding to a Jak-associated receptor triggers the activation of the Signal Transducers and Activators of Transcription (STAT) family of transcription factors. Previous work indicated that the IL-23 receptor complex is associated with the tyrosine kinases Jak2 and Tyk2 that promote STAT3 phosphorylation. Subsequent studies showed that IL23 activation of STAT3 induces the expression of the transcription factor RORγt, which is crucial for IL-17 production. This work has explored the IL-23 signalling cascade, determining the optimal conditions for STAT3 activation and demonstrating the activation of other transcription factors such as STAT4, STAT5 and STAT1 that contribute to IL-23-mediated signalling pathways.
Resumo:
We previously demonstrated that α1B-adrenergic receptor (AR) gene transcription, mRNA, and functionally coupled receptors increase during 3% O2 exposure in aorta, but not in vena cava smooth muscle cells (SMC). We report here that α1BAR mRNA also increases during hypoxia in liver and lung, but not heart and kidney. A single 2.7-kb α1BAR mRNA was detected in aorta and vena cava during normoxia and hypoxia. The α1BAR 5′ flanking region was sequenced to −2,460 (relative to ATG +1). Transient transfection experiments identify the minimal promoter region between −270 and −143 and sequence between −270 and −248 that are required for transcription of the α1BAR gene in aorta and vena cava SMC during normoxia and hypoxia. An ATTAAA motif within this sequence specifically binds aorta, vena cava, and DDT1MF-2 nuclear proteins, and transcription primarily initiates downstream of this motif at approximately −160 in aorta SMC. Sequence between −837 and −273 conferred strong hypoxic induction of transcription in aorta, but not in vena cava SMC, whereas the cis-element for the transcription factor, hypoxia-inducible factor 1, conferred hypoxia-induced transcription in both aorta and vena cava SMC. These data identify sequence required for transcription of the α1BAR gene in vascular SMC and suggest the atypical TATA-box, ATTAAA, may mediate this transcription. Hypoxia-sensitive regions of the α1BAR gene also were identified that may confer the differential hypoxic increase in α1BAR gene transcription in aorta, but not in vena cava SMC.
Resumo:
Growth factors can influence lineage determination of neural crest stem cells (NCSCs) in an instructive manner, in vitro. Because NCSCs are likely exposed to multiple signals in vivo, these findings raise the question of how stem cells would integrate such combined influences. Bone morphogenetic protein 2 (BMP2) promotes neuronal differentiation and glial growth factor 2 (GGF2) promotes glial differentiation; if NCSCs are exposed to saturating concentrations of both factors, BMP2 appears dominant. By contrast, if the cells are exposed to saturating concentrations of both BMP2 and transforming growth factor β1 (which promotes smooth muscle differentiation), the two factors appear codominant. Sequential addition experiments indicate that NCSCs require 48–96 hrs in GGF2 before they commit to a glial fate, whereas the cells commit to a smooth muscle fate within 24 hr in transforming growth factor β1. The delayed response to GGF2 does not reflect a lack of functional receptors; however, because the growth factor induces rapid mitogen-activated protein kinase phosphorylation in naive cells. Furthermore, GGF2 can attenuate induction of the neurogenic transcription factor mammalian achaete-scute homolog 1, by low doses of BMP2. This short-term antineurogenic influence of GGF2 is not sufficient for glial lineage commitment, however. These data imply that NCSCs exhibit cell-intrinsic biases in the timing and relative dosage sensitivity of their responses to instructive factors that influence the outcome of lineage decisions in the presence of multiple factors. The relative delay in glial lineage commitment, moreover, apparently reflects successive short-term and longer-term actions of GGF2. Such a delay may help to explain why glia normally differentiate after neurons, in vivo.
Resumo:
Alveolar rhabdomyosarcoma is an aggressive pediatric cancer of striated muscle characterized in 60% of cases by a t(2;13)(q35;q14). This results in the fusion of PAX3, a developmental transcription factor required for limb myogenesis, with FKHR, a member of the forkhead family of transcription factors. The resultant PAX3-FKHR gene possesses transforming properties; however, the effects of this chimeric oncogene on gene expression are largely unknown. To investigate the actions of these transcription factors, both Pax3 and PAX3-FKHR were introduced into NIH 3T3 cells, and the resultant gene expression changes were analyzed with a murine cDNA microarray containing 2,225 elements. We found that PAX3-FKHR but not PAX3 activated a myogenic transcription program including the induction of transcription factors MyoD, Myogenin, Six1, and Slug as well as a battery of genes involved in several aspects of muscle function. Notable among this group were the growth factor gene Igf2 and its binding protein Igfbp5. Relevance of this model was suggested by verification that three of these genes (IGFBP5, HSIX1, and Slug) were also expressed in alveolar rhabdomyosarcoma cell lines. This study utilizes cDNA microarrays to elucidate the pattern of gene expression induced by an oncogenic transcription factor and demonstrates the profound myogenic properties of PAX3-FKHR in NIH 3T3 cells.
Resumo:
Accumulative evidence suggests that more than 20 neuron-specific genes are regulated by a transcriptional cis-regulatory element known as the neural restrictive silencer (NRS). A trans-acting repressor that binds the NRS, NRSF [also designated RE1-silencing transcription factor (REST)] has been cloned, but the mechanism by which it represses transcription is unknown. Here we show evidence that NRSF represses transcription of its target genes by recruiting mSin3 and histone deacetylase. Transfection experiments using a series of NRSF deletion constructs revealed the presence of two repression domains, RD-1 and RD-2, within the N- and C-terminal regions, respectively. A yeast two-hybrid screen using the RD-1 region as a bait identified a short form of mSin3B. In vitro pull-down assays and in vivo immunoprecipitation-Western analyses revealed a specific interaction between NRSF-RD1 and mSin3 PAH1-PAH2 domains. Furthermore, NRSF and mSin3 formed a complex with histone deacetylase 1, suggesting that NRSF-mediated repression involves histone deacetylation. When the deacetylation of histones was inhibited by tricostatin A in non-neuronal cells, mRNAs encoding several neuronal-specific genes such as SCG10, NMDAR1, and choline acetyltransferase became detectable. These results indicate that NRSF recruits mSin3 and histone deacetylase 1 to silence neural-specific genes and suggest further that repression of histone deacetylation is crucial for transcriptional activation of neural-specific genes during neuronal terminal differentiation.
Resumo:
Cell proliferation is regulated by the induction of growth promoting genes and the suppression of growth inhibitory genes. Malignant growth can result from the altered balance of expression of these genes in favor of cell proliferation. Induction of the transcription factor, c-Myc, promotes cell proliferation and transformation by activating growth promoting genes, including the ODC and cdc25A genes. We show that c-Myc transcriptionally represses the expression of a growth arrest gene, gas1. A conserved Myc structure, Myc box 2, is required for repression of gas1, and for Myc induction of proliferation and transformation, but not for activation of ODC. Activation of a Myc-estrogen receptor fusion protein by 4-hydroxytamoxifen was sufficient to repress gas1 gene transcription. These findings suggest that transcriptional repression of growth arrest genes, including gas1, is one step in promotion of cell growth by Myc.
Resumo:
We present evidence that the sporulation protein SpoIVFB of Bacillus subtilis is a member of a newly recognized family of metalloproteases that have catalytic centers adjacent to or within the membrane. SpoIVFB is required for converting the membrane-associated precursor protein, pro-σK, to the mature and active transcription factor σK by proteolytic removal of an N-terminal extension of 20 amino acids. SpoIVFB and other family members share the conserved sequence HEXXH, a hallmark of metalloproteases, as well as a second conserved motif NPDG, which is unique to the family. Both motifs, which are expected to form the catalytic center of the protease, overlap hydrophobic segments that are predicted to be separate transmembrane domains. The only other characterized member of this family of membrane-embedded metalloproteases is the mammalian Site-2 protease (S2P), which is required for the intramembrane cleavage of the eukaryotic transcription factor sterol regulatory element binding protein (SREBP). We report that amino acid substitutions in the two conserved motifs of SpoIVFB impair pro-σK processing and σK-directed gene expression during sporulation. These results and those from a similar analysis of S2P support the interpretation that both proteins are founding members of a family of metalloproteases involved in the activation of membrane-associated transcription factors. Thus, the pathways that govern the activation of the prokaryotic transcription factor pro-σK and the mammalian transcription factor SREBP not only are analogous but also use processing enzymes with strikingly homologous features.
Resumo:
The transcription factor VP1 regulates maturation and dormancy in plant seeds by activating genes responsive to the stress hormone abscisic acid (ABA). Although activation involves ABA-responsive elements (ABREs), VP1 itself does not specifically bind ABREs. Instead, we have identified and cloned a basic region leucine zipper (bZIP) factor, TRAB1, that interacts with both VP1 and ABREs. Transcription from a chimeric promoter with GAL4-binding sites was ABA-inducible if cells expressed a GAL4 DNA-binding domain∷TRAB1 fusion protein. Results indicate that TRAB1 is a true trans-acting factor involved in ABA-regulated transcription and reveal a molecular mechanism for the VP1-dependent, ABA-inducible transcription that controls maturation and dormancy in plant embryos.
Resumo:
It is a goal of cancer chemotherapy to achieve the selective killing of tumor cells while minimizing toxicity to normal tissues. We describe the design of selective toxins forming DNA adducts that attract the estrogen receptor (ER), a transcription factor that is overexpressed in many human breast and ovarian tumors. The compounds consist of 4-(3-aminopropyl)-N,N-(2-chloroethyl)-aniline linked to 2-(4′-hydroxyphenyl)-3-methyl-5-hydroxy-indole. The former moiety is a DNA damaging nitrogen mustard and the latter is a ligand for the ER. The connection between these groups was refined to permit DNA adducts formed by the mustard portion of the molecule to present the ligand domain so that it was able to interact efficiently with the ER. By using 16-mers containing specific DNA adducts, it was determined that monoadducts and putative intrastrand crosslinks were preferred targets for the ER over interstrand crosslinks. A series of structurally related 2-phenylindole mustards was prepared, some of which were selectively toxic to the ER-positive breast cancer cell line MCF-7, as compared with the ER(−) negative line MDA-MB231. The ability both to bind to DNA and to interact significantly with the ER were essential to achieve selective lethality toward ER(+) cells. Compounds forming DNA adducts without the ability to bind receptor showed similar toxicities in the two cell lines. Several models could explain the selective toxicity of the mustard–phenylindole compounds toward ER(+) cells. The favored model suggests that a mustard–DNA adduct is shielded by the ER from DNA repair enzymes and hence cells possessing an abundance of the ER selectively retain the adduct and are killed.
Resumo:
Gene regulation by imposed localization was studied by using designed zinc finger proteins that bind 18-bp DNA sequences in the 5′ untranslated regions of the protooncogenes erbB-2 and erbB-3. Transcription factors were generated by fusion of the DNA-binding proteins to repression or activation domains. When introduced into cells these transcription factors acted as dominant repressors or activators of, respectively, endogenous erbB-2 or erbB-3 gene expression. Significantly, imposed regulation of the two genes was highly specific, despite the fact that the transcription factor binding sites targeted in erbB-2 and erbB-3 share 15 of 18 nucleotides. Regulation of erbB-2 gene expression was observed in cells derived from several species that conserve the DNA target sequence. Repression of erbB-2 in SKBR3 breast cancer cells inhibited cell-cycle progression by inducing a G1 accumulation, suggesting the potential of designed transcription factors for cancer gene therapy. These results demonstrate the willful up- and down-regulation of endogenous genes, and provide an additional means to alter biological systems.
Resumo:
The degradation of the RpoS (σS) subunit of RNA polymerase in Escherichia coli is a prime example of regulated proteolysis in prokaryotes. RpoS turnover depends on ClpXP protease, the response regulator RssB, and a hitherto uncharacterized “turnover element” within RpoS itself. Here we localize the turnover element to a small element (around the crucial amino acid lysine-173) directly downstream of the promoter-recognizing region 2.4 in RpoS. Its sequence as well as its location identify the turnover element as a unique proteolysis-promoting motif. This element is shown to be a site of interaction with RssB. Thus, RssB is functionally unique among response regulators as a direct recognition factor in ClpXP-dependent RpoS proteolysis. Binding of RssB to RpoS is stimulated by phosphorylation of the RssB receiver domain, suggesting that environmental stress affects RpoS proteolysis by modulating RssB affinity for RpoS. Initial evidence indicates that lysine-173 in RpoS, besides being essential of RpoS proteolysis, may play a role in promoter recognition. Thus the same region in RpoS is crucial for proteolysis as well as for activity as a transcription factor.
Resumo:
Poxviruses employ many strategies to evade and neutralize the host immune response. In this study, we have identified two vaccinia virus ORFs, termed A46R and A52R, that share amino acid sequence similarity with the Toll/IL-1 receptor (TIR) domain, a motif that defines the IL-1/Toll-like receptor (TLR) superfamily of receptors, which have a key role in innate immunity and inflammation. When expressed in mammalian cells, the protein products of both ORFs were shown to interfere specifically with IL-1 signal transduction. A46R partially inhibited IL-1-mediated activation of the transcription factor NFκB, and A52R potently blocked both IL-1- and TLR4-mediated NFκB activation. MyD88 is a TIR domain-containing adapter molecule known to have a central role in both IL-1 and TLR4 signaling. A52R mimicked the dominant-negative effect of a truncated version of MyD88 on IL-1, TLR4, and IL-18 signaling but had no effect on MyD88-independent signaling pathways. Therefore, A46R and A52R are likely to represent a mechanism used by vaccinia virus of suppressing TIR domain-dependent intracellular signaling.