902 resultados para transcranial magnetic stimulation (TMS)
Resumo:
In type I diabetes mellitus, islet transplantation provides a moment-to-moment fine regulation of insulin. Success rates vary widely, however, necessitating suitable methods to monitor islet delivery, engraftment and survival. Here magnetic resonance-trackable magnetocapsules have been used simultaneously to immunoprotect pancreatic beta-cells and to monitor, non-invasively in real-time, hepatic delivery and engraftment by magnetic resonance imaging (MRI). Magnetocapsules were detected as single capsules with an altered magnetic resonance appearance on capsule rupture. Magnetocapsules were functional in vivo because mouse beta-cells restored normal glycemia in streptozotocin-induced diabetic mice and human islets induced sustained C-peptide levels in swine. In this large-animal model, magnetocapsules could be precisely targeted for infusion by using magnetic resonance fluoroscopy, whereas MRI facilitated monitoring of liver engraftment over time. These findings are directly applicable to ongoing improvements in islet cell transplantation for human diabetes, particularly because our magnetocapsules comprise clinically applicable materials.
Resumo:
Cardiovascular magnetic resonance (CMR) is a rapidly emerging non-invasive imaging technique free of X-Ray and offers higher spatial resolution than alternative forms of cardiac imaging for the assessment of left ventricular (LV) anatomy, function, and viability due to the unique capability of myocardial tissue characterization after gadolinium-chelates contrast administration. This imaging technique has clinical utility over a broad spectrum of heart diseases: ranging from ischaemic to non ischaemic aetiologies. Cardiomyopathies (CMP) are a heterogeneous group of diseases of the myocardium associated with architectural abnormalities and mechanical dysfunction. CMR can help excluding coronary artery disease and can provide positive diagnostic features for several CMP resulted in better diagnosis and management, Leading to improvements in mortality.
Resumo:
Purpose: Dynamic high-field magnetic resonance (MR) defecography including the evacuation phase is a promising tool for the assessment of functional pelvic disorders, nowadays seen with increasing frequency in elderly women in particular. Learning objectives: 1. To describe the adequate technique of dynamic high-field MRI (3T) in assessing pelvic floor disorders. 2. To provide an overview of the most common pathologies occurring during the evacuation phase, especially in comparison with results of conventional defecography. Methods and materials: After description of the ideal technical parameters of MR defecography performed in supine position after gel rectal filling with a 3 Tesla unit and including the evacuation phase we stress the importance of using a standardized evaluation system for the exact assessment of pelvic floor pathophysiology. Results: The typical pelvic floor disorders occurring before and/or during the evacuation phase, such as sphincter insufficiency, vaginal vault and/or uterine prolapse, cystourethrocele, peritoneo-/ entero-/ sigmoïdocele or rectal prolapse, are demonstrated. The difference between the terms "pelvic floor descent" and "pelvic floor relaxation" are pictorially outlined. MR results are compared with these of conventional defecography. Conclusion: Exact knowledge about the correct technique including the evacuation phase and the use of a standardized evaluation system in assessing pelvic floor disorders by dynamic high-field MRI is mandatory for accurate and reproducible diagnosis.
Resumo:
BACKGROUND: The purpose of this prospective study was to perform a head-to-head comparison of the two methods most frequently used for evaluation of carotid plaque characteristics: Multi-detector Computed Tomography Angiography (MDCTA) and black-blood 3 T-cardiovascular magnetic resonance (bb-CMR) with respect to their ability to identify symptomatic carotid plaques. METHODS: 22 stroke unit patients with unilateral symptomatic carotid disease and >50% stenosis by duplex ultrasound underwent MDCTA and bb-CMR (TOF, pre- and post-contrast fsT1w-, and fsT2w- sequences) within 15 days of symptom onset. Both symptomatic and contralateral asymptomatic sides were evaluated. By bb-CMR, plaque morphology, composition and prevalence of complicated AHA type VI lesions (AHA-LT6) were evaluated. By MDCTA, plaque type (non-calcified, mixed, calcified), plaque density in HU and presence of ulceration and/or thrombus were evaluated. Sensitivity (SE), specificity (SP), positive and negative predictive value (PPV, NPV) were calculated using a 2-by-2-table. RESULTS: To distinguish between symptomatic and asymptomatic plaques AHA-LT6 was the best CMR variable and presence / absence of plaque ulceration was the best CT variable, resulting in a SE, SP, PPV and NPV of 80%, 80%, 80% and 80% for AHA-LT6 as assessed by bb-CMR and 40%, 95%, 89% and 61% for plaque ulceration as assessed by MDCTA. The combined SE, SP, PPV and NPV of bb-CMR and MDCTA was 85%, 75%, 77% and 83%, respectively. CONCLUSIONS: Bb-CMR is superior to MDCTA at identifying symptomatic carotid plaques, while MDCTA offers high specificity at the cost of low sensitivity. Results were only slightly improved over bb-CMR alone when combining both techniques.
Resumo:
Despite advances in both prevention and treatment, cardiovascular disease remains the leading cause of morbidity and mortality in the United States. The current gold standard for the diagnosis of coronary artery disease is the x-ray coronary angiogram, which is both costly and associated with a small risk of morbidity. More than 1 million Americans are referred for this test annually, and despite the availability of numerous noninvasive tests to identify patients with coronary artery disease, > or =35% of patients referred for this test are found not to have disease. It therefore would be beneficial to use a noninvasive test to allow the presence of coronary atherosclerosis to be determined directly. Coronary magnetic resonance angiography, a technique that is aimed at establishing a noninvasive test for the assessment of significant coronary stenoses, obviates the risks of patient exposure to radiation of x-ray angiography and therefore represents a major step forward in diagnostic cardiology.
Resumo:
Antibody-drug conjugates (ADC) are emerging as powerful treatment strategies with outstanding target-specificity and high therapeutic activity in patients with cancer. Brentuximab vedotin represents a first-in-class ADC directed against CD30(+) malignancies. We hypothesized that its sustained clinical responses could be related to the stimulation of an anticancer immune response. In this study, we demonstrate that the dolastatin family of microtubule inhibitors, from which the cytotoxic component of brentuximab vedotin is derived, comprises potent inducers of phenotypic and functional dendritic cell (DC) maturation. In addition to the direct cytotoxic effect on tumor cells, dolastatins efficiently promoted antigen uptake and migration of tumor-resident DCs to the tumor-draining lymph nodes. Exposure of murine and human DCs to dolastatins significantly increased their capacity to prime T cells. Underlining the requirement of an intact host immune system for the full therapeutic benefit of dolastatins, the antitumor effect was far less pronounced in immunocompromised mice. We observed substantial therapeutic synergies when combining dolastatins with tumor antigen-specific vaccination or blockade of the PD-1-PD-L1 and CTLA-4 coinhibitory pathways. Ultimately, treatment with ADCs using dolastatins induces DC homing and activates cellular antitumor immune responses in patients. Our data reveal a novel mechanism of action for dolastatins and provide a strong rationale for clinical treatment regimens combining dolastatin-based therapies, such as brentuximab vedotin, with immune-based therapies. Cancer Immunol Res; 2(8); 741-55. ©2014 AACR.
Resumo:
Motivation. The study of human brain development in itsearly stage is today possible thanks to in vivo fetalmagnetic resonance imaging (MRI) techniques. Aquantitative analysis of fetal cortical surfacerepresents a new approach which can be used as a markerof the cerebral maturation (as gyration) and also forstudying central nervous system pathologies [1]. However,this quantitative approach is a major challenge forseveral reasons. First, movement of the fetus inside theamniotic cavity requires very fast MRI sequences tominimize motion artifacts, resulting in a poor spatialresolution and/or lower SNR. Second, due to the ongoingmyelination and cortical maturation, the appearance ofthe developing brain differs very much from thehomogenous tissue types found in adults. Third, due tolow resolution, fetal MR images considerably suffer ofpartial volume (PV) effect, sometimes in large areas.Today extensive efforts are made to deal with thereconstruction of high resolution 3D fetal volumes[2,3,4] to cope with intra-volume motion and low SNR.However, few studies exist related to the automatedsegmentation of MR fetal imaging. [5] and [6] work on thesegmentation of specific areas of the fetal brain such asposterior fossa, brainstem or germinal matrix. Firstattempt for automated brain tissue segmentation has beenpresented in [7] and in our previous work [8]. Bothmethods apply the Expectation-Maximization Markov RandomField (EM-MRF) framework but contrary to [7] we do notneed from any anatomical atlas prior. Data set &Methods. Prenatal MR imaging was performed with a 1-Tsystem (GE Medical Systems, Milwaukee) using single shotfast spin echo (ssFSE) sequences (TR 7000 ms, TE 180 ms,FOV 40 x 40 cm, slice thickness 5.4mm, in plane spatialresolution 1.09mm). Each fetus has 6 axial volumes(around 15 slices per volume), each of them acquired inabout 1 min. Each volume is shifted by 1 mm with respectto the previous one. Gestational age (GA) ranges from 29to 32 weeks. Mother is under sedation. Each volume ismanually segmented to extract fetal brain fromsurrounding maternal tissues. Then, in-homogeneityintensity correction is performed using [9] and linearintensity normalization is performed to have intensityvalues that range from 0 to 255. Note that due tointra-tissue variability of developing brain someintensity variability still remains. For each fetus, ahigh spatial resolution image of isotropic voxel size of1.09 mm is created applying [2] and using B-splines forthe scattered data interpolation [10] (see Fig. 1). Then,basal ganglia (BS) segmentation is performed on thissuper reconstructed volume. Active contour framework witha Level Set (LS) implementation is used. Our LS follows aslightly different formulation from well-known Chan-Vese[11] formulation. In our case, the LS evolves forcing themean of the inside of the curve to be the mean intensityof basal ganglia. Moreover, we add local spatial priorthrough a probabilistic map created by fitting anellipsoid onto the basal ganglia region. Some userinteraction is needed to set the mean intensity of BG(green dots in Fig. 2) and the initial fitting points forthe probabilistic prior map (blue points in Fig. 2). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed as described in [8]. Results.The case study presented here has 29 weeks of GA. Thehigh resolution reconstructed volume is presented in Fig.1. The steps of BG segmentation are shown in Fig. 2.Overlap in comparison with manual segmentation isquantified by the Dice similarity index (DSI) equal to0.829 (values above 0.7 are considered a very goodagreement). Such BG segmentation has been applied on 3other subjects ranging for 29 to 32 GA and the DSI hasbeen of 0.856, 0.794 and 0.785. Our segmentation of theinner (red and blue contours) and outer cortical surface(green contour) is presented in Fig. 3. Finally, torefine the results we include our WM segmentation in theFreesurfer software [12] and some manual corrections toobtain Fig.4. Discussion. Precise cortical surfaceextraction of fetal brain is needed for quantitativestudies of early human brain development. Our workcombines the well known statistical classificationframework with the active contour segmentation forcentral gray mater extraction. A main advantage of thepresented procedure for fetal brain surface extraction isthat we do not include any spatial prior coming fromanatomical atlases. The results presented here arepreliminary but promising. Our efforts are now in testingsuch approach on a wider range of gestational ages thatwe will include in the final version of this work andstudying as well its generalization to different scannersand different type of MRI sequences. References. [1]Guibaud, Prenatal Diagnosis 29(4) (2009). [2] Rousseau,Acad. Rad. 13(9), 2006, [3] Jiang, IEEE TMI 2007. [4]Warfield IADB, MICCAI 2009. [5] Claude, IEEE Trans. Bio.Eng. 51(4) (2004). [6] Habas, MICCAI (Pt. 1) 2008. [7]Bertelsen, ISMRM 2009 [8] Bach Cuadra, IADB, MICCAI 2009.[9] Styner, IEEE TMI 19(39 (2000). [10] Lee, IEEE Trans.Visual. And Comp. Graph. 3(3), 1997, [11] Chan, IEEETrans. Img. Proc, 10(2), 2001 [12] Freesurfer,http://surfer.nmr.mgh.harvard.edu.
Resumo:
OBJECTIVES: The goal of the present study was to develop a strategy for three-dimensional (3D) volume acquisition along the major axes of the coronary arteries. BACKGROUND: For high-resolution 3D free-breathing coronary magnetic resonance angiography (MRA), coverage of the coronary artery tree may be limited due to excessive measurement times associated with large volume acquisitions. Planning the 3D volume along the major axis of the coronary vessels may help to overcome such limitations. METHODS: Fifteen healthy adult volunteers and seven patients with X-ray angiographically confirmed coronary artery disease underwent free-breathing navigator-gated and corrected 3D coronary MRA. For an accurate volume targeting of the high resolution scans, a three-point planscan software tool was applied. RESULTS: The average length of contiguously visualized left main and left anterior descending coronary artery was 81.8 +/- 13.9 mm in the healthy volunteers and 76.2 +/- 16.5 mm in the patients (p = NS). For the right coronary artery, a total length of 111.7 +/- 27.7 mm was found in the healthy volunteers and 79.3 +/- 4.6 mm in the patients (p = NS). Comparing coronary MRA and X-ray angiography, a good agreement of anatomy and pathology was found in the patients. CONCLUSIONS: Double-oblique submillimeter free-breathing coronary MRA allows depiction of extensive parts of the native coronary arteries. The results obtained in patients suggest that the method has the potential to be applied in broader prospective multicenter studies where coronary MRA is compared with X-ray angiography.
Resumo:
PURPOSE: To study the clinical outcome in hippocampal deep brain stimulation (DBS) for the treatment of patients with refractory mesial temporal lobe epilepsy (MTLE) according to the electrode location. METHODS: Eight MTLE patients implanted in the hippocampus and stimulated with high-frequency DBS were included in this study. Five underwent invasive recordings with depth electrodes to localize ictal onset zone prior to chronic DBS. Position of the active contacts of the electrode was calculated on postoperative imaging. The distances to the ictal onset zone were measured as well as atlas-based hippocampus structures impacted by stimulation were identified. Both were correlated with seizure frequency reduction. RESULTS: The distances between active electrode location and estimated ictal onset zone were 11±4.3 or 9.1±2.3mm for patients with a >50% or <50% reduction in seizure frequency. In patients (N=6) showing a >50% seizure frequency reduction, 100% had the active contacts located <3mm from the subiculum (p<0.05). The 2 non-responders patients were stimulated on contacts located >3mm to the subiculum. CONCLUSION: Decrease of epileptogenic activity induced by hippocampal DBS in refractory MTLE: (1) seems not directly associated with the vicinity of active electrode to the ictal focus determined by invasive recordings; (2) might be obtained through the neuromodulation of the subiculum.
Resumo:
Direct electrical stimulation of the colon offers a promising approach for the induction of propulsive colonic contractions by using an implantable device. The objective of this study was to assess the feasibility to induce colonic contractions using a commercially available battery-operated stimulator (maximum pulse width of 1 ms and maximum amplitude of 10 V). Three pairs of pacing electrodes were inserted into the cecal seromuscular layer of anesthetized pigs. During a first set of in vivo experiments conducted on six animals, a pacing protocol leading to cecum contractions was determined: stimulation bursts with 1 ms pulse width, 10 V amplitude (7-15 mA), 120 Hz frequency, and 30-s burst duration, repeated every 2-5 min. In a second testing phase, an evaluation of the pacing protocol was performed in four animals (120 stimulation bursts in total). By using the battery-operated stimulator, contractions of the cecum and movement of contents could be induced in 92% of all stimulations. A cecal shortening of about 30% and an average intraluminal pressure increase of 10.0 +/- 6.0 mmHg were observed.
Resumo:
OBJECTIVES: This study was designed to identify macrophage-rich atherosclerotic plaque noninvasively by imaging the tissue uptake of long-circulating superparamagnetic nanoparticles with a positive contrast off-resonance imaging sequence (inversion recovery with ON-resonant water suppression [IRON]). BACKGROUND: The sudden rupture of macrophage-rich atherosclerotic plaques can trigger the formation of an occlusive thrombus in coronary vessels, resulting in acute myocardial infarction. Therefore, a noninvasive technique that can identify macrophage-rich plaques and thereby assist with risk stratification of patients with atherosclerosis would be of great potential clinical utility. METHODS: Experiments were conducted on a clinical 3-T magnetic resonance imaging (MRI) scanner in 7 heritable hyperlipidemic and 4 control rabbits. Monocrystalline iron-oxide nanoparticles (MION)-47 were administrated intravenously (2 doses of 250 mumol Fe/kg), and animals underwent serial IRON-MRI before injection of the nanoparticles and serially after 1, 3, and 6 days. RESULTS: After administration of MION-47, a striking signal enhancement was found in areas of plaque only in hyperlipidemic rabbits. The magnitude of enhancement on magnetic resonance images had a high correlation with the number of macrophages determined by histology (p < 0.001) and allowed for the detection of macrophage-rich plaque with high accuracy (area under the curve: 0.92, SE: 0.04, 95% confidence interval: 0.84 to 0.96, p < 0.001). No significant signal enhancement was measured in remote areas without plaque by histology and in control rabbits without atherosclerosis. CONCLUSIONS: Using IRON-MRI in conjunction with superparamagnetic nanoparticles is a promising approach for the noninvasive evaluation of macrophage-rich, vulnerable plaques.
Resumo:
Na-K-adenosinetriphosphatase (Na-K-ATPase) is a potential target for phosphorylation by protein kinase A (PKA) and C (PKC). We have investigated whether the Na-K-ATPase alpha-subunit becomes phosphorylated at its PKA or PKC phosphorylation sites upon stimulation of G protein-coupled receptors primarily linked either to the PKA or the PKC pathway. COS-7 cells, transiently or stably expressing Bufo marinus Na-K-ATPase wild-type alpha- or mutant alpha-subunits affected in its PKA or PKC phosphorylation site, were transfected with recombinant DNA encoding beta 2- or alpha 1-adrenergic (AR), dopaminergic (D1A-R), or muscarinic cholinergic (M1-AChR) receptor subspecies. Agonist stimulation of beta 2-AR or D1A-R led to phosphorylation of the wild-type alpha-subunit, as well as the PKC mutant, but not of the PKA mutant, indicating that these receptors can phosphorylate the Na-K-ATPase via PKA activation. Surprisingly, stimulation of the alpha 1B-AR, alpha 1C-AR, and M1-AChR also increased the phosphorylation of the wild-type alpha-subunit and its PKC mutant but not of its PKA mutant. Thus the phosphorylation induced by these primarily phospholipase C-linked receptors seems mainly mediated by PKA activation. These data indicate that the Na-K-ATPase alpha-subunit can act as an ultimate target for PKA phosphorylation in a cascade starting with agonist-receptor interaction and leading finally to a phosphorylation-mediated regulation of the enzyme.
Resumo:
A magnetostratigraphic study of the Kavaalani section of uppermost Carnian to Upper Norian age, located in the Antalya Calcareous Nappes (southwestern Turkey), reveals nineteen polarity intervals. This pattern correlates very well with two other polarity sequences obtained from the same nappe system (Bolucektasi Tepe and Kavur Tepe) if these sections were deposited in the same (northern) hemisphere. This new interpretation changes our previous conclusions regarding the southern hemisphere origin of the magnetic remanence of the Kavur Tepe section. The paleomagnetic data obtained from the Kavur Tepe and the Kavaalani sections therefore reflect large (similar to 180 degrees) internal rotations within the Antalya nappes. These nappes were likely formed close to the northern tip of the Arabian promontory. We propose a revised yet still preliminary version of the Norian magnetic polarity sequence.