989 resultados para training reflective


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous papers have noted the difficulty in obtaining neural models which are stable under simulation when trained using prediction-error-based methods. Here the differences between series-parallel and parallel identification structures for training neural models are investigated. The effect of the error surface shape on training convergence and simulation performance is analysed using a standard algorithm operating in both training modes. A combined series-parallel/parallel training scheme is proposed, aiming to provide a more effective means of obtaining accurate neural simulation models. Simulation examples show the combined scheme is advantageous in circumstances where the solution space is known or suspected to be complex. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the application of regularisation to the training of feedforward neural networks, as a means of improving the quality of solutions obtained. The basic principles of regularisation theory are outlined for both linear and nonlinear training and then extended to cover a new hybrid training algorithm for feedforward neural networks recently proposed by the authors. The concept of functional regularisation is also introduced and discussed in relation to MLP and RBF networks. The tendency for the hybrid training algorithm and many linear optimisation strategies to generate large magnitude weight solutions when applied to ill-conditioned neural paradigms is illustrated graphically and reasoned analytically. While such weight solutions do not generally result in poor fits, it is argued that they could be subject to numerical instability and are therefore undesirable. Using an illustrative example it is shown that, as well as being beneficial from a generalisation perspective, regularisation also provides a means for controlling the magnitude of solutions. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Purpose—Severe upper limb paresis is a major contributor to disability after stroke. This study investigated the efficacy of a new nonrobotic training device, the Sensorimotor Active Rehabilitation Training (SMART) Arm, that was used with or without electromyography-triggered electrical stimulation of triceps brachii to augment elbow extension, permitting stroke survivors with severe paresis to practice a constrained reaching task.

Methods—A single-blind, randomized clinical trial was conducted with 42 stroke survivors with severe and chronic paresis. Thirty-three participants completed the study, of whom 10 received training using the SMART Arm with electromyography-triggered electrical stimulation, 13 received training using the SMART Arm alone, and 10 received no intervention (control). Training consisted of 12 1-hour sessions over 4 weeks. The primary outcome measure was “upper arm function,” item 6 of the Motor Assessment Scale. Secondary outcome measures included impairment measures; triceps muscle strength, reaching force, modified Ashworth scale; and activity measures: reaching distance and Motor Assessment Scale. Assessments were administered before (0 weeks) and after training (4 weeks) and at 2 months follow-up (12 weeks).

Results—Both SMART Arm groups demonstrated significant improvements in all impairment and activity measures after training and at follow-up. There was no significant difference between these 2 groups. There was no change in the control group.

Conclusions—Our findings indicate that training of reaching using the SMART Arm can reduce impairment and improve activity in stroke survivors with severe and chronic upper limb paresis, highlighting the benefits of intensive task-oriented practice, even in the context of severe paresis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In young adults, improvements in the rate of force development as a result of resistance training are accompanied by increases in neural drive in the very initial phase of muscle activation. The purpose of this experiment was to determine if older adults also exhibit similar adaptations in response to rate of force development (RFD) training. Eight young (21-35 years) and eight older (60-79 years) adults were assessed during the production of maximum rapid contractions, before and after four weeks of progressive resistance training for the elbow flexors. Young and older adults exhibited significant increases (P<0.01) in peak RFD, of 25.6% and 28.6% respectively. For both groups the increase in RFD was accompanied by an increase in the root mean square (RMS) amplitude and in the rate of rise (RER) in the electromyogram (EMG) throughout the initial 100 ms of activation. For older adults, however, this training response was only apparent in the brachialis and brachioradialis muscles. This response was not observed in surface EMG recorded from the biceps brachii muscle during either RFD testing or throughout training, nor was it observed in the pronator teres muscle. The minimal adaptations observed for older adults in the bifunctional muscles biceps brachii and pronator teres are considered to indicate a compromise of the neural adaptations older adults might experience in response to resistance training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to examine the capacity of resistance training to enhance the rapid and coordinated production of force by older people. Thirty adults (greater than or equal to 60 years) completed a visually guided aiming task that required the generation of isometric torque in 2 df about the elbow prior to and following a 4-week training period. Groups of six participants were allocated to two progressive ( 40 - 100% maximal voluntary contraction (MVC)) resistance-training (PRT) groups, to two constant low-load (10% MVC) training groups (CLO) and to one no-training control group. Training movements required the generation of either combined flexion and supination (FLESUP), or combined extension and supination (EXTSUP). In response to training, target acquisition times in the aiming task decreased for all groups; however, both the nature of the training load and the training movement influenced the pattern and magnitude of improvements (EXTSUP_ CLO: 36%, FLESUP_ PRT 26%, EXTSUP_ PRT 22%, FLESUP_ CLO 20%, CONTROL 15%). For one group that trained with progressively increasing loads, there arose a subsequent decrease in performance in one condition of the transfer task. For each group, these adaptations were accompanied by systematic changes in the coordination of muscles about the elbow joint, particularly the biceps brachii.