979 resultados para thyroid transcription factor 1
Resumo:
The myogenic differentiation 1 gene (MYOD1) has a key role in skeletal muscle differentiation and composition through its regulation of the expression of several muscle-specific genes. We first used a general linear mixed model approach to evaluate the association of MYOD1 expression levels on individual beef tenderness phenotypes. MYOD1 mRNA levels measured by quantitative polymerase chain reactions in 136 Nelore steers were significantly associated (P ? 0.01) with Warner?Bratzler shear force, measured on the longissimus dorsi muscle after 7 and 14 days of beef aging. Transcript abundance for the muscle regulatory gene MYOD1 was lower in animals with more tender beef. We also performed a coexpression network analysis using whole transcriptome sequence data generated from 30 samples of longissimus muscle tissue to identify genes that are potentially regulated by MYOD1. The effect of MYOD1 gene expression on beef tenderness may emerge from its function as an activator of muscle-specific gene transcription such as for the serum response factor (C-fos serum response element-binding transcription factor) gene (SRF), which determines muscle tissue development, composition, growth and maturation.
Resumo:
Ewing sarcoma (EWS) and CIC-DUX4 sarcoma (CDS) are pediatric fusion gene-driven tumors of mesenchymal origin characterized by an extremely stable genome and limited clinical solutions. Post-transcriptional regulatory mechanisms are crucial for understanding the development of this class of tumors. RNA binding proteins (RBPs) play a crucial role in the aggressiveness of these tumors. Numerous RBP families are dysregulated in cancer, including IGF2BPs. Among these, IGF2BP3 is a negative prognostic factor in EWS because it promotes cell growth, chemoresistence, and induces the metastatic process. Based on preliminary RNA sequencing data from clinical samples of EWS vs CDS patients, three major axes that are more expressed in CDS have been identified, two of which are dissected in this PhD work. The first involves the transcription factor HMGA2, IGF2BP2-3, and IGF2; the other involves the ephrin receptor system, particularly EphA2. EphA2 is involved in numerous cellular functions during embryonic stages, and its increased expression in adult tissues is often associated with pathological conditions. In tumors, its role is controversial because it can be associated with both pro- and anti-tumoral mechanisms. In EWS, it has been shown to play a role in promoting cell migration and neoangiogenesis. Our study has confirmed that the HMGA2/IGF2BPs/IGF2 axis contributes to CDS malignancy, and Akt hyperactivation has a strong impact on migration. Using loss/gain of function models for EphA2, we confirmed that it is a substrate of Akt, and Akt hyperactivation in CDS triggers ligand-independent activation of EphA2 through phosphorylation of S897. Moreover, the combination of Trabectedin and NVP/BEZ235 partially inhibits Akt/mTOR activation, resulting in reduced tumor growth in vivo. Inhibition of EphA2 through ALWII 41_27 significantly reduces migration in vitro. The project aim is the identification of target molecules in CDS that can distinguish it from EWS and thus develop new targeted therapeutic strategies.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants that occur naturally in complex mixtures. Many of the adverse health effects of PAHs including cancer are linked to the activation of intracellular stress response signaling. This study has investigated intracellular MAPK signaling in response to PAHs in extracts from urban air collected in Stockholm, Sweden and Limeira, Brazil, in comparison to BP in HepG2 cells. Nanomolar concentrations of PAHs in the extracts induced activation of MEK4 signaling with down-stream increased gene expression of several important stress response mediators. Involvement of the MEK4/JNK pathway was confirmed using siRNA and an inhibitor of JNK signaling resulting in significantly reduced MAPK signaling transactivated by the AP-1 transcription factors ATF2 and c-Jun. ATF2 was also identified as a sensitive stress responsive protein with activation observed at extract concentrations equivalent to 0.1 nM BP. We show that exposure to low levels of environmental PAH mixtures more strongly activates these signaling pathways compared to BP alone suggesting effects due to interactions. Taken together, this is the first study showing the involvement of MEK4/JNK/AP-1 pathway in regulating the intracellular stress response after exposure to nanomolar levels of PAHs in environmental mixtures.
Resumo:
High phosphate (Pi) levels and extracellular matrix (ECM) accumulation are associated with chronic kidney disease progression. However, how high Pi levels contribute to ECM accumulation in mesangial cells is unknown. The present study investigated the role and mechanism of high Pi levels in ECM accumulation in immortalized human mesangial cells (iHMCs). iHMCs were exposed to normal (0.9 mM) or increasing Pi concentrations (2.5 and 5 mM) with or without diferent blockers or activators. NOX4, phosphorylated AMPK (p-AMPK), phosphorylated SMAD3 (p-SMAD3), fibronectin (F/N), collagen IV (C-IV) and alpha-smooth muscle actin (α-SMA) expression was assessed via western blot and immunofluorescence. Lucigenin-enhanced chemiluminescence, and dihydroethidium (DHE) assessed NADPH oxidase activity and superoxide (SO), respectively. In iHMCs, a Pi transporter blocker (PFA) abrogated high Pi-induced AMPK inactivation, increase in NADPH oxidase-induced reactive oxygen species (ROS) levels, NOX4, p-SMAD3, α-SMA and C-IV expression. AMPK activation by AICAR, NOX4 silencing or NADPH oxidase blocker prevented high Pi-induced DHE levels, p-SMAD3, F/N, C-IV and α-SMA expression. AMPK inactivation with NOX4-induced ROS formation and transforming growth factor ß-1 (TGFß-1) signaling activation mediates high Pi-induced ECM accumulation in iHMCs. Maneuvers increasing AMPK or reducing NOX4 activity may contribute to renal protection under hyperphosphatemia.
Resumo:
In this study, a novel concise series of molecules based on the structure of goniothalamin (1) was synthesized and evaluated against a highly metastatic human pancreatic cancer cell line (Panc-1). Among them, derivative 8 displayed a low IC50 value (2.7 μM) and its concentration for decreasing colony formation was 20-fold lower than goniothalamin (1). Both compounds reduced the levels of the receptor tyrosine kinase (AXL) and cyclin D1 which are known to be overexpressed in pancreatic cancer cells. Importantly, despite the fact that goniothalamin (1) and derivative 8 caused pancreatic cancer cell cycle arrest and cell death, only derivative 8 was able to downregulate pro-survival and proliferation pathways mediated by mitogen activated protein kinase ERK1/2. Another interesting finding was that Panc-1 cells treated with derivative 8 displayed a strong decrease in the transcription factor (c-Myc), hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) protein levels. Notably, the molecular effects caused by derivative 8 might not be related to ROS generation, since no significant production of ROS was observed in low concentrations of this compound (from 1.5 up to 3 μM). Therefore, the downregulation of important mediators of pancreatic cancer aggressiveness by derivative 8 reveals its great potential for the development of new chemotherapeutic agents for pancreatic cancer treatment.
Resumo:
Reprogramming of somatic cells to pluripotency promises to boost cellular therapy. Most instances of direct reprogramming have been achieved by forced expression of defined exogenous factors using multiple viral vectors. The most used 4 transcription factors, octamer-binding transcription factor 4 (OCT4), (sex determining region Y)-box 2 (SOX2), Kruppel-like factor 4 (KLF4), and v-myc myelocytomatosis viral oncogene homolog (C-MYC), can induce pluripotency in mouse and human fibroblasts. Here, we report that forced expression of a new combination of transcription factors (T-cell leukemia/lymphoma protein 1A [TCL-1A], C-MYC, and SOX2) is sufficient to promote the reprogramming of human fibroblasts into pluripotent cells. These 3-factor pluripotent cells are similar to human embryonic stem cells in morphology, in the ability to differentiate into cells of the 3 embryonic layers, and at the level of global gene expression. Induced pluripotent human cells generated by a combination of other factors will be of great help for the understanding of reprogramming pathways. This, in turn, will allow us to better control cell-fate and apply this knowledge to cell therapy.
Resumo:
Background: Children born small for gestational age (SGA) experience higher rates of morbidity and mortality than those born appropriate for gestational age. In Latin America, identification and optimal management of children born SGA is a critical issue. Leading experts in pediatric endocrinology throughout Latin America established working groups in order to discuss key challenges regarding the evaluation and management of children born SGA and ultimately develop a consensus statement. Discussion: SGA is defined as a birth weight and/or birth length greater than 2 standard deviations (SD) below the population reference mean for gestational age. SGA refers to body size and implies length-weight reference data in a geographical population whose ethnicity is known and specific to this group. Ideally, each country/region within Latin America should establish its own standards and make relevant updates. SGA children should be evaluated with standardized measures by trained personnel every 3 months during year 1 and every 6 months during year 2. Those without catch-up growth within the first 6 months of life need further evaluation, as do children whose weight is <= -2 SD at age 2 years. Growth hormone treatment can begin in SGA children > 2 years with short stature (< -2.0 SD) and a growth velocity < 25th percentile for their age, and should continue until final height (a growth velocity below 2 cm/year or a bone age of > 14 years for girls and > 16 years for boys) is reached. Blood glucose, thyroid function, HbA1c, and insulin-like growth factor-1 (IGF-1) should be monitored once a year. Monitoring insulin changes from baseline and surrogates of insulin sensitivity is essential. Reduced fetal growth followed by excessive postnatal catch-up in height, and particularly in weight, should be closely monitored. In both sexes, gonadal function should be monitored especially during puberty. Summary: Children born SGA should be carefully followed by a multidisciplinary group that includes perinatologists, pediatricians, nutritionists, and pediatric endocrinologists since 10% to 15% will continue to have weight and height deficiency through development and may benefit from growth hormone treatment. Standards/guidelines should be developed on a country/region basis throughout Latin America.
Resumo:
impairment of CCAAT Enhancer Binding Protein alpha (CEBPA) function is a common finding in acute myeloid leukemia; nevertheless, its relevance for acute promyelocytic leukemia pathogenesis is unclear. We analyzed the expression and assessed the methylation status of the core and upstream promoters of CEBPA in acute promyelocytic leukemia at diagnosis. Patients with acute promyelocytic leukemia (n=18) presented lower levels of CEBPA expression compared to healthy controls (n=5), but higher levels than those in acute myeloid leukemia with t(8;21) (n=9) and with inv(16) (n=5). Regarding the core promoter, we detected no methylation in 39 acute promyelocytic leukemia samples or in 8 samples from controls. In contrast, analysis of the upstream promoter showed methylation in 37 of 39 samples, with 17 patients showing methylation levels over 30%. Our results corroborate data obtained in animal models showing that CEBPA is down-regulated in acute promyelocytic leukemia stem cells and suggest that epigenetic mechanisms may be involved.
Resumo:
Conventional vaccines to prevent the pneumonia caused by Rhodococcus equi have not been successful. We have recently demonstrated that immunization with Salmonella enterica Typhimurium expressing the VapA antigen protects mice against R. equi infection. We now report that oral vaccination of mice with this recombinant strain results in high and persistent fecal levels of antigen-specific IgA, and specific proliferation of the spleen cells of immunized mice in response to the in vitro stimulation with R. equi antigen. After in vitro stimulation, spleen cells of immunized mice produce high levels of Th1 cytokines and show a prominent mRNA expression of the Th1 transcription factor T-bet, in detriment of the Th2 transcription factor GATA-3. Following R. equi challenge, a high H(2)O(2), NO, IL-12, and IFN-gamma content is detected in the organs of immunized mice. On the other hand, TNF-alpha and IL-4 levels are markedly lower in the organs of vaccinated mice, compared with the non-vaccinated ones. The IL-10 content and the mRNA transcription level of TGF-beta are also higher in the organs of immunized mice. A greater incidence of CD4(+) and CD8(+) T cells and B lymphocytes is verified in vaccinated mice. However, there is no difference between vaccinated and non-vaccinated mice in terms of the frequency of CD4(+)CD25(+)Foxp3(+) T cells. Finally, we show that the vaccination confers a long-term protection against R. equi infection. Altogether, these data indicate that the oral vaccination of mice with S. enterica Typhimurium expressing VapA induces specific and long-lasting humoral and cellular responses against the pathogen, which are appropriately regulated and allow tissue integrity after challenge.
Resumo:
Previous studies show that exercise training and caloric restriction improve cardiac function in obesity. However, the molecular mechanisms underlying this effect on cardiac function remain unknown. Thus, we studied the effect of exercise training and/or caloric restriction on cardiac function and Ca(2+) handling protein expression in obese rats. To accomplish this goal, male rats fed with a high-fat and sucrose diet for 25 weeks were randomly assigned into 4 groups: high-fat and sucrose diet, high-fat and sucrose diet and exercise training, caloric restriction, and exercise training and caloric restriction. An additional lean group was studied. The study was conducted for 10 weeks. Cardiac function was evaluated by echocardiography and Ca(2+) handling protein expression by Western blotting. Our results showed that visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels were higher in rats on the high-fat and sucrose diet compared with the lean rats. Cardiac nitrate levels, reduced/oxidized glutathione, left ventricular fractional shortening, and protein expression of phosphorylated Ser(2808)-ryanodine receptor and Thr(17-)phospholamban were lower in rats on the high-fat and sucrose diet compared with lean rats. Exercise training and/or caloric restriction prevented increases in visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels and prevented reduction in cardiac nitrate levels and reduced: oxidized glutathione ratio. Exercise training and/or caloric restriction prevented reduction in left ventricular fractional shortening and in phosphorylation of the Ser(2808)-ryanodine receptor and Thr(17)-phospholamban. These findings show that exercise training and/or caloric restriction prevent cardiac dysfunction in high-fat and sucrose diet rats, which seems to be attributed to decreased circulating neurohormone levels. In addition, this nonpharmacological paradigm prevents a reduction in the Ser(2808)-ryanodine receptor and Thr(17-)phospholamban phosphorylation and redox status. (Hypertension. 2010;56:629-635.)
Resumo:
Several aspects of photoperception and light signal transduction have been elucidated by studies with model plants. However, the information available for economically important crops, such as Fabaceae species, is scarce. In order to incorporate the existing genomic tools into a strategy to advance soybean research, we have investigated publicly available expressed sequence tag ( EST) sequence databases in order to identify Glycine max sequences related to genes involved in light-regulated developmental control in model plants. Approximately 38,000 sequences from open-access databases were investigated, and all bona fide and putative photoreceptor gene families were found in soybean sequence databases. We have identified G. max orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses, although some important Arabidopsis phytochrome-signaling components are absent. Moreover, soybean and Arabidopsis gene-family homologs appear to have undergone a distinct expansion process in some cases. We propose a working model of light perception, signal transduction and response-eliciting in G. max, based on the identified key components from Arabidopsis. These results demonstrate the power of comparative genomics between model systems and crop species to elucidate several aspects of plant physiology and metabolism.
Resumo:
Background: Topical flavonoids, such as quercetin, have been shown to reduce ultraviolet (UV) irradiation-mediated skin damage. However, the mechanisms and signaling pathways involved in this protective effect are not clear. UV irradiation leads to activation of two major signaling pathways, namely nuclear factor kappa B (NF-kappa B) and activator protein-1 (AP-1) pathways. Activation of NF-kappa B pathway by UV irradiation stimulates inflammatory cytokine expression, whereas activation of AP-1 pathway by UV irradiation promotes matrix metalloproteinase (MMP) production. Both pathways contribute to UV irradiation-induced skin damage, such as photoaging and skin tumor formation. Objective: To elucidate the underlying mechanism, we examined the effect of quercetin on UV irradiation induced activation of NF-kappa B and AP-1 pathways. Methods: Primary human keratinocytes, the major skin cell type subjected to physiological solar UV irradiation, were used to study the effects of quercetin on UV irradiation-induced signal transduction pathways. Results: Quercetin decreased UV irradiation-induced NF-kappa B DNA-binding by 80%. Consequently, quercetin suppressed UV irradiation-induced expression of inflammatory cytokines IL-1 beta (similar to 60%), IL-6 (similar to 80%), IL-8 (similar to 76%) and TNF-alpha (similar to 69%). In contrast, quercetin had no effect on UV irradiation activation of three MAP kinases, ERK, JNK, or p38. Accordingly, induction of AP-1 target genes such as MMP-1 and MMP-3 by UV irradiation was not suppressed by quercetin. Conclusion: Our data indicate that the ability of quercetin to block UV irradiation-induced skin inflammation is mediated, at least in part, by its inhibitory effect on NF-kappa B activation and inflammatory cytokine production. (C) 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
We have previously detected two related murine nuclear proteins, p160 and p67, that can bind to the leucine zipper motif within the negative regulatory domain of the Myb transcription factor. We now describe the molecular cloning of cDNA corresponding to murine p160. The P160 gene is located on mouse chromosome 11, and related sequences are found on chromosomes 1 and 12. The predicted p160 protein is novel, and in agreement with previous studies, we find that the corresponding 4.5-kb mRNA is ubiquitously expressed. We showed that p67 is an N-terminal fragment of p160 which is generated by proteolytic cleavage in certain cell types. The protein encoded by the cloned p160 cDNA and an engineered protein (p67*) comprising the amino-terminal region of p160 exhibit binding specificities for the Myb and Jun leucine zipper regions identical to those of endogenous p160 and p67, respectively. This implies that the Myb-binding site of p160 lies within the N-terminal 580 residues and that the Jun-binding site is C-terminal to this position. Moreover, we show that p67* but not p160 can inhibit transactivation by Myb. Unexpectedly, immunofluorescence studies show that p160 is localized predominantly in the nucleolus. The implications of these results for possible functions of p160 are discussed.
Resumo:
The basic framework for the JAK/STAT pathway is well documented. Recruitment of latent cytoplasmic STAT transcription factors to tyrosine phosphorylated docking sites on cytokine receptors and their JAK-mediated phosphorylation instigates their translocation to the nucleus and their ability to bind DNA, The biochemical processes underlying recruitment and activation of this pathway have commonly been studied in reconstituted in vitro systems using previously defined recombinant signaling components. We have dissected the Interferon gamma (IFN gamma) signal transduction pathway in crude extracts from wild-type and STAT1-negative mutant cell Lines by real-time BIAcore analysis, size-exclusion (SE) chromatography and immune-detection. The data indicate that in detergent-free cell extracts: (1) the phospho-tyrosine (Y440P)-containing peptide motif of the IFN gamma-receptor ct-chain interacts directly with STAT1, or STAT1 complexes, and no other protein; (2) nonactivated STAT 1 is present in a higher molecular weight complex(es) and, at least for IFN gamma-primed cells, is available for recruitment to the activated IFN gamma-receptor from only a subset of such complexes; (3) activated STAT1 is released from the receptor as a monomer.
Resumo:
Liver suppressor factor one (LSF-1) is a 40-kDa immunosuppressive protein in the serum of rats 60 days after orthotopic liver transplantation (OLT) between the nonrejector combination of DA donors into PVG; recipients. In the present study, the purification of proteins from rat OLT serum taken 60 days after transplantation Mras performed by affinity chromatography using the anti-LSF-1 polyclonal antibody (pAb). The assessment of column eluates using anti-LSF-1 and OLT serum was studied using rat heart and liver transplantation models. Rejection was not suppressed by the administration of OLT serum in heart or liver allografts. However, heart allografts treated with peak eluates (450 mu g single shot im, dissolved in Intralipos) taken from the affinity OLT serum survived significantly longer than untreated rats (median = 36.5 days; n = 7 vs 6.5 days; n = 5, respectively, P = 0.011). The same treatment with anti-LSF-1 column eluates also prolonged liver allografts significantly (>200 days) than those in either the untreated group (median = 11 days; n = 7) or those which received only Intralipos (median = 10.5 days; n = 5, P = 0.019). Subsequent analysis of the N-terminal sequences of some of the proteins which were eluted from the affinity column revealed that the homology of a 30-kDa protein was identical to hemoglobin alpha-chain, a 59-kDa protein to granulocyte inhibitory factor, a 70-kDa and a 90-kDa to albumin and its precursor, respectively. Although the specific immunosuppressive component has not been isolated, our results suggested that the anti-LSF-1 column can extract immunosuppressive moiety of LSF-1 from OLT serum. (C) 1998 Academic Press.