952 resultados para therapeutische Vakzinierung, adoptive Immuntherapie, mCMV, murine Cytomegalovirus, Dense Bodies
Resumo:
Intraperitoneal larval infection (alveolar echinococcosis, AE) with Echinococcus multilocularis in mice impairs host immunity. Metacestode metabolites may modulate immunity putatively via dendritic cells. During murine AE, a relative increase of peritoneal DCs (pe-DCs) in infected mice (AE-pe-DCs; 4% of total peritoneal cells) as compared to control mice (naive pe-DCs; 2%) became apparent in our study. The differentiation of AE-pe-DCs into TGF-beta-expressing cells and the higher level of IL-4 than IFN-gamma/IL-2 mRNA expression in AE-CD4+pe-T cells indicated a Th2 orientation. Analysis of major accessory molecule expression on pe-DCs from AE-infected mice revealed that CD80 and CD86 were down-regulated on AE-pe-DCs, while ICAM-1(CD54) remained practically unchanged. Moreover, AE-pe-DCs had a weaker surface expression of MHC class II (Ia) molecules as compared to naive pe-DCs. The gene expression level of molecules involved in MHC class II (Ia) synthesis and formation of MHC class II (Ia)-peptide complexes were down-regulated. In addition, metacestodes excreted/secreted (E/S) or vesicle-fluid (V/F) antigens were found to alter MHC class II molecule expression on the surface of BMDCs. Finally, conversely to naive pe-DCs, an increasing number of AE-pe-DCs down-regulated Con A-induced proliferation of naive CD4+pe-T cells. These findings altogether suggested that TGF-beta-expressing immature AE-pe-DCs might play a significant role in the generation of a regulatory immune response within the peritoneal cavity of AE-infected mice.
Resumo:
Calretinin (CR) and calbindin D-28k (CB) are cytosolic EF-hand Ca(2+)-binding proteins and function as Ca(2+) buffers affecting the spatiotemporal aspects of Ca(2+) transients and possibly also as Ca(2+) sensors modulating signaling cascades. In the adult hippocampal circuitry, CR and CB are expressed in specific principal neurons and subsets of interneurons. In addition, CR is transiently expressed within the neurogenic dentate gyrus (DG) niche. CR and CB expression during adult neurogenesis mark critical transition stages, onset of differentiation for CR, and the switch to adult-like connectivity for CB. Absence of either protein during these stages in null-mutant mice may have functional consequences and contribute to some aspects of the identified phenotypes. We report the impact of CR- and CB-deficiency on the proliferation and differentiation of progenitor cells within the subgranular zone (SGZ) neurogenic niche of the DG. Effects were evaluated (1) two and four weeks postnatally, during the transition period of the proliferative matrix to the adult state, and (2) in adult animals (3 months) to trace possible permanent changes in adult neurogenesis. The absence of CB from differentiated DG granule cells has no retrograde effect on the proliferative activity of progenitor cells, nor affects survival or migration/differentiation of newborn neurons in the adult DG including the SGZ. On the contrary, lack of CR from immature early postmitotic granule cells causes an early loss in proliferative capacity of the SGZ that is maintained into adult age, when it has a further impact on the migration/survival of newborn granule cells. The transient CR expression at the onset of adult neurogenesis differentiation may thus have two functions: (1) to serve as a self-maintenance signal for the pool of cells at the same stage of neurogenesis contributing to their survival/differentiation, and (2) it may contribute to retrograde signaling required for maintenance of the progenitor pool.
Resumo:
SUMMARY: In Neospora caninum and Toxoplasma gondii, the parasitophorous vacuole (PV) is synthesized at the time of infection. During tachyzoite-to-bradyzoite stage conversion, the PV is later transformed into a tissue cyst that allows parasites to survive in their host for extended periods of time. We report on the characterization of NcMAG1, the N. caninum orthologue of T. gondii MAG1 (matrix antigen 1; TgMAG1). The 456 amino acid predicted NcMAG1 protein is 54% identical to TgMAG1. By immunoblotting, a rabbit antiserum raised against recombinant NcMAG1 detected a major product of approximately 67 kDa in extracts of N. caninum tachyzoite-infected Vero cells, which was stained more prominently in extracts of infected Vero cells treated to induce in vitro bradyzoite conversion. Immunofluorescence and TEM localized the protein mainly within the cyst wall and the cyst matrix. In both tachyzoites and bradyzoites, NcMAG1 was associated with the parasite dense granules. Comparison between NcMAG1 and TgMAG1 amino acid sequences revealed that the C-terminal conserved regions exhibit 66% identity, while the N-terminal variable regions exhibit only 32% identity. Antibodies against NcMAG1-conserved region cross-reacted with the orthologuous protein in T. gondii but those against the variable region did not. This indicates that the variable region possesses unique antigenic characteristics.
Resumo:
Studies using cultured cells allow one to dissect complex cellular mechanisms in greater detail than when studying living organisms alone. However, before cultured cells can deliver meaningful results they must accurately represent the in vivo situation. Over the last three to four decades considerable effort has been devoted to the development of culture media which improve in vitro growth and modeling accuracy. In contrast to earlier large-scale, non-specific screening of factors, in recent years the development of such media has relied increasingly on a deeper understanding of the cell's biology and the selection of growth factors to specifically activate known biological processes. These new media now enable equal or better cell isolation and growth, using significantly simpler and less labor-intensive methodologies. Here we describe a simple method to isolate and cultivate epidermal keratinocytes from embryonic or neonatal skin on uncoated plastic using a medium specifically designed to retain epidermal keratinocyte progenitors in an undifferentiated state for improved isolation and proliferation and an alternative medium to support terminal differentiation.
Resumo:
HIV-1 negative factor (Nef) elevates virus replication and contributes to immune evasion in vivo. As one of its established in vitro activities, Nef interferes with T-lymphocyte chemotaxis by reducing host cell actin dynamics. To explore Nef's influence on in vivo recirculation of T lymphocytes, we assessed lymph-node homing of Nef-expressing primary murine lymphocytes and found a drastic impairment in homing to peripheral lymph nodes. Intravital imaging and 3D immunofluorescence reconstruction of lymph nodes revealed that Nef potently impaired T-lymphocyte extravasation through high endothelial venules and reduced subsequent parenchymal motility. Ex vivo analyses of transendothelial migration revealed that Nef disrupted T-lymphocyte polarization and interfered with diapedesis and migration in the narrow subendothelial space. Consistently, Nef specifically affected T-lymphocyte motility modes used in dense environments that pose high physical barriers to migration. Mechanistically, inhibition of lymph node homing, subendothelial migration and cell polarization, but not diapedesis, depended on Nef's ability to inhibit host cell actin remodeling. Nef-mediated interference with in vivo recirculation of T lymphocytes may compromise T-cell help and thus represents an important mechanism for its function as a HIV pathogenicity factor.
Resumo:
Background In HIV-infected patients, prediction of Cytomegalovirus (CMV) disease remains difficult. A protective role of mannan-binding lectin (MBL) and ficolins against CMV disease has been reported after transplantation, but the impact in HIV-infected patients is unclear. Methods In a case-control study nested within the Swiss HIV Cohort Study, we investigated associations between plasma levels of MBL/ficolins and CMV disease. We compared HIV-infected patients with CMV disease (cases) to CMV-seropositive patients without CMV disease (controls) matched for CD4 T-cells, sampling time, and use of combination antiretroviral therapy. MBL and M-ficolin, L-ficolin, and H-ficolin were quantified using ELISA. Results We analysed 105 cases and 105 matched controls. CMV disease was neither associated with MBL (odds ratio [OR] 1.03 per log10 ng/mL increase (95% CI 0.73–1.45)) nor with ficolins (OR per log10 ng/mL increase 0.66 (95% CI 0.28–1.52), 2.34 (95% CI 0.44–12.36), and 0.89 (95% CI 0.26–3.03) for M-ficolin, L-ficolin, and H-ficolin, respectively). We found no evidence of a greater association between MBL and CMV disease in patients with low CD4 counts; however in the multivariable analysis, CMV disease was more likely in patients with an increased HIV RNA (OR 1.53 per log10 copies/mL; 95% CI 1.08–2.16), or a shorter duration of HIV-infection (OR 0.91 per year; 95% CI 0.84–0.98). Conclusions CMV disease is not associated with low levels of MBL/ficolins, suggesting a lack of a protective role in HIV-infected patients.
Resumo:
OBJECTIVE To investigate the effects of interleukin-17A (IL-17A) on osteoclastogenesis in vitro. METHODS Bone marrow cells (BMCs) were isolated from the excised tibia and femora of wild-type C57BL/6J mice, and osteoblasts were obtained by sequential digestion of the calvariae of ddY, C57BL/6J, and granulocyte-macrophage colony-stimulating factor-knockout (GM-CSF(-/-)) mice. Monocultures of BMCs or cocultures of BMCs and osteoblasts were supplemented with or without 1,25-dihydroxyvitamin D(3)(1,25[OH](2)D(3)), recombinant human macrophage colony-stimulating factor (M-CSF), RANKL, and IL-17A. After 5-6 days, the cultures were fixed with 4% paraformaldehyde and subsequently stained for the osteoclast marker enzyme tartrate-resistant acid phosphatase (TRAP). Osteoprotegerin (OPG) and GM-CSF expression were measured by enzyme-linked immunosorbent assay, and transcripts for RANK and RANKL were detected by real-time polymerase chain reaction. RESULTS In both culture systems, IL-17A alone did not affect the development of osteoclasts. However, the addition of IL-17A plus 1,25(OH)(2)D(3) to cocultures inhibited early osteoclast development within the first 3 days of culture and induced release of GM-CSF into the culture supernatants. Furthermore, in cocultures of GM-CSF(-/-) mouse osteoblasts and wild-type mouse BMCs, IL-17A did not affect osteoclast development, corroborating the role of GM-CSF as the mediator of the observed inhibition of osteoclastogenesis by IL-17A. CONCLUSION These findings suggest that IL-17A interferes with the differentiation of osteoclast precursors by inducing the release of GM-CSF from osteoblasts.
Resumo:
Farnesyltransferase Inhibitors (FTIs) are a class of drugs known to prevent the farnesylation and subsequent membrane attachment of a number of intracellular proteins. In various studies, the administration of FTIs has been found to play a role in the activation and development of T-cells in the immune system. FTIs have also been found to act as immunomodulators in delaying MHC-II mismatched skin allografts in mice. This study focuses on the effect of the FTI, ABT-100, on the differentiation and cytokine secretion of Th1 and Th2 helper T-cells in BALB/C mice to better understand which immune responses are targeted by FTIs. Splenocytes were isolated from BALB/C mice, skewed towards either a Th1 or a Th2 phenotype with the addition of cytokines, and treated with various concentrations of ABT-100. Splenocytes were also isolated and immediately cultured in the presence of ABT-100 to observe differentiation trends of helper T-cells. Cytokine production was measured using intracytoplasmic flow cytometry analysis. I found that ABT-100 treatment does not block Th1 or Th2 cell differentiation. Instead, ABT-100 treatment appears to affect cytokine production from effector T-cells. I found that ABT-100 causes a decrease in IFN-¿ production in mature Th1 cells yet does not affect IL-4 production in mature Th2 cells. This decrease in cytokine production as a result of ABT-100 treatments provides a potential mechanism for how ABT-100 works to delay MHC-II mismatched allograft rejection.
Resumo:
Patientinnen und Patienten mit einer schweren Essstörung (Anorexie, Bulimie, weitere) finden einerseits selten Eingang in systematische Studien, sind andererseits aber häufig auf ein stationäres Behandlungssetting in einem tertiären Zentrum angewiesen. Die kürzlich veröffentlichte S3-Leitlinie zur Behandlung von Essstörungen erlaubt eine klarere Einschätzung der Hospitalisationsbedürftigkeit schwer Essgestörter als bisher. In der vorliegenden Arbeit wurden 26 Patientinnen und Patienten mit einer schweren Essstörung, die konsekutiv auf einer spezialisierten psychosomatisch/internistischen universitären Einrichtung hospitalisiert wurden, retrospektiv hinsichtlich ihrer biologischen, psychologischen und sozialen Merkmale charakterisiert und in Bezug zur S3-Leitlinie gestellt. Die biopsychosozialen Charakteristika der untersuchten Population zeigen, dass die Hospitalisierung schwer Essgestörter im tertiärmedizinischen Setting mit einem multiprofessionellen Behandlungsteam evidenzbasiert erfolgt.
Resumo:
Atrial tissue expresses both connexin 40 (Cx40) and 43 (Cx43) proteins. To assess the relative roles of Cx40 and Cx43 in atrial electrical propagation, we synthesized cultured strands of atrial myocytes derived from mice with genetic deficiency in Cx40 or Cx43 expression and measured propagation velocity (PV) by high-resolution optical mapping of voltage-sensitive dye fluorescence. The amount of Cx40 and/or Cx43 in gap junctions was measured by immunohistochemistry and total or sarcolemmal Cx43 or Cx40 protein by immunoblotting. Progressive genetic reduction in Cx43 expression decreased PV from 34+/-6 cm/sec in Cx43(+/+) to 30+/-8 cm/sec in Cx43(+/-) and 19+/-11 cm/sec in Cx43(-/-) cultures. Concomitantly, the cell area occupied by Cx40 immunosignal in gap junctions decreased from 2.0+/-1.6% in Cx43(+/+) to 1.7+/-0.5% in Cx43(+/-) and 1.0+/-0.2% in Cx43(-/-) strands. In contrast, progressive genetic reduction in Cx40 expression increased PV from 30+/-2 cm/sec in Cx40(+/+) to 40+/-7 cm/sec in Cx40(+/-) and 45+/-10 cm/sec in Cx40(-/-) cultures. Concomitantly, the cell area occupied by Cx43 immunosignal in gap junctions increased from 1.2+/-0.9% in Cx40(+/+) to 2.8+/-1.4% in Cx40(+/-) and 3.1+/-0.6% in Cx40(-/-) cultures. In accordance with the immunostaining results, immunoblots of the Triton X-100-insoluble fraction revealed an increase of Cx43 in gap junctions in extracts from Cx40-ablated atria, whereas total cellular Cx43 remained unchanged. Our results suggest that the relative abundance of Cx43 and Cx40 is an important determinant of atrial impulse propagation in neonatal hearts, whereby dominance of Cx40 decreases and dominance of Cx43 increases local propagation velocity.
Resumo:
BACKGROUND: Splanchnic vein thrombosis may complicate inherited thrombotic disorders. Acute cytomegalovirus infection is a rare cause of acquired venous thrombosis in the portal or mesenteric territory, but has never been described extending into a main hepatic vein. CASE PRESENTATION: A 36-year-old immunocompetent woman presented with acute primary cytomegalovirus infection in association with extensive thrombosis in the portal and splenic vein. In addition, a fresh thrombus was evident in the right hepatic vein. A thorough evaluation for a hypercoagulable state was negative. The clinical course, biological evolution, radiological and histological findings were consistent with cytomegalovirus hepatitis complicated by a partial acute Budd-Chiari syndrome and portal thrombosis. Therapeutic anticoagulation was associated with a slow clinical improvement and partial vascular recanalization. CONCLUSION: We described in details a new association between cytomegalovirus infection and acute venous thrombosis both in the portal vein and in the right hepatic vein, realizing a partial Budd-Chiari syndrome. One should be aware that this rare thrombotic event may be complicated by partial venous outflow block.
Resumo:
Immature dendritic cells (DC) reside in tissues where they initiate immune responses by taking up foreign antigens. Since DC have a limited tissue half-life, the DC pool in tissues has to be replenished constantly. This implies that precursor/immature DC must be able to cross non-activated endothelium using as yet unknown mechanisms. Here we show that immature, but not mature bone marrow-derived murine DC migrate across resting endothelial monolayers in vitro. We find that endothelial intercellular adhesion molecule-2 (ICAM-2) is a major player in transendothelial migration (TEM) of immature DC, accounting for at least 41% of TEM. Surprisingly, the ICAM-2-mediated TEM was independent of beta2-integrins, the known ICAM-2 ligands, since neither blocking of beta2-integrins with antibodies nor the use of CD18-deficient DC affected the ICAM-2-specific TEM. In humans, the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) was shown to interact with ICAM-2, suggesting a similar role in mice. However, we find that none of the murine DC-SIGN homologues mDC-SIGN, murine DC-SIGN-related molecule-1 (mSIGN-R1) and mSIGN-R3 is expressed on the surface of bone marrow-derived mouse DC. Taken together, this study shows that ICAM-2 strongly supports transmigration of immature DC across resting endothelium by interacting with ligands that are distinct from beta2-integrins and DC-SIGN homologues.
Resumo:
Larval infection with Echinococcus multilocularis starts with the intrahepatic postoncospheral development of a metacestode that-at its mature stage-consists of an inner germinal and an outer laminated layer (GL ; LL). In certain cases, an appropriate host immune response may inhibit parasite proliferation. Several lines of evidence obtained in vivo and in vitro indicate the important bio-protective role of the LL. For instance, the LL has been proposed to protect the GL from nitric oxide produced by periparasitic macrophages and dendritic cells, and also to prevent immune recognition by surrounding T cells. On the other hand, the high periparasitic NO production by peritoneal exsudate cells contributes to periparasitic immunosuppression, explaining why iNOS deficienct mice exhibit a significantly lower susceptibility towards experimental infection. The intense periparasitic granulomatous infiltration indicates a strong host-parasite interaction, and the involvement of cellular immunity in control of the metacestode growth kinetics is strongly suggested by experiments carried out in T cell deficient mouse strains. Carbohydrate components of the LL, such as Em2(G11) and Em492, as well as other parasite metabolites yield immunomodulatory effects that allow the parasite to survive in the host. I.e., the IgG response to the Em2(G11)-antigen takes place independently of alpha-beta+CD4+T cells, and in the absence of interactions between CD40 and CD40 ligand. Such parasite molecules also interfere with antigen presentation and cell activation, leading to a mixed Th1/Th2-type response at the later stage of infection. Furthermore, Em492 and other (not yet published) purified parasite metabolites suppress ConA and antigen-stimulated splenocyte proliferation. Infected mouse macrophages (AE-MØ) as antigen presenting cells (APC) exhibited a reduced ability to present a conventional antigen (chicken ovalbumin, C-Ova) to specific responder lymph node T cells when compared to normal MØ. As AE-MØ fully maintain their capacity to appropriately process antigens, a failure in T cell receptor occupancy by antigen-Ia complex or/and altered co-stimulatory signals can be excluded. Studying the status of accessory molecules implicated in T cell stimulation by MØ, it could be shown that B7-1 (CD80) and B7-2 (CD86) remained unchanged, whereas CD40 was down-regulated and CD54 (=ICAM-1) slightly up-regulated. FACS analysis of peritoneal cells revealed a decrease in the percentage of CD4+ and CD8+T cells in AE-infected mice. Taken together the obstructed presenting-activity of AE-MØ appeared to trigger an unresponsiveness of T cells leading to the suppression of their clonal expansion during the chronic phase of AE infection. Interesting information on the parasite survival strategy and potential can be obtained upon in vitro and in vivo treatment. Hence, we provided very innovative results by showing that nitazoxanide, and now also, respectively, new modified compounds may represent a useful alternative to albendazole. In the context of chemotherapeutical repression of parasite growth, we searched also for parasite molecules, whose expression levels correlate with the viability and growth activity of E. multilocularis metacestode. Expression levels of 14-3-3 and II/3-10, relatively quantified by realtime reverse transcription-PCR using a housekeeping gene beta-actin, were studied in permissive nu/nu and in low-permissive wild type BALB/c mice. At 2 months p.i., the transcription level of 14-3-3 was significantly higher in parasites actively proliferating in nu/nu mice compared to parasites moderately growing in wild type mice. Immunoblotting experiments confirmed at the protein level that 14-3-3 was over-expressed in parasites derived from nu/nu mice at 2 months p.i. In vitro-treatment of E. multilocularis with an anti-echinococcal drug nitazoxanide for a period of 8 days resulted in a significant decrease of both 14-3-3 and II/3-10 transcription levels,