934 resultados para the parabolized stability equations (PSE)
Resumo:
In this PhD study, mathematical modelling and optimisation of granola production has been carried out. Granola is an aggregated food product used in breakfast cereals and cereal bars. It is a baked crispy food product typically incorporating oats, other cereals and nuts bound together with a binder, such as honey, water and oil, to form a structured unit aggregate. In this work, the design and operation of two parallel processes to produce aggregate granola products were incorporated: i) a high shear mixing granulation stage (in a designated granulator) followed by drying/toasting in an oven. ii) a continuous fluidised bed followed by drying/toasting in an oven. In addition, the particle breakage of granola during pneumatic conveying produced by both a high shear granulator (HSG) and fluidised bed granulator (FBG) process were examined. Products were pneumatically conveyed in a purpose built conveying rig designed to mimic product conveying and packaging. Three different conveying rig configurations were employed; a straight pipe, a rig consisting two 45° bends and one with 90° bend. It was observed that the least amount of breakage occurred in the straight pipe while the most breakage occurred at 90° bend pipe. Moreover, lower levels of breakage were observed in two 45° bend pipe than the 90° bend vi pipe configuration. In general, increasing the impact angle increases the degree of breakage. Additionally for the granules produced in the HSG, those produced at 300 rpm have the lowest breakage rates while the granules produced at 150 rpm have the highest breakage rates. This effect clearly the importance of shear history (during granule production) on breakage rates during subsequent processing. In terms of the FBG there was no single operating parameter that was deemed to have a significant effect on breakage during subsequent conveying. A population balance model was developed to analyse the particle breakage occurring during pneumatic conveying. The population balance equations that govern this breakage process are solved using discretization. The Markov chain method was used for the solution of PBEs for this process. This study found that increasing the air velocity (by increasing the air pressure to the rig), results in increased breakage among granola aggregates. Furthermore, the analysis carried out in this work provides that a greater degree of breakage of granola aggregates occur in line with an increase in bend angle.
Resumo:
This thesis explores the evolution of the concept of traditional Chinese femininity in relation to women’s lives in ancient China (221 BCE – A.D.1840). It proposes that the traditional Chinese femininity had been trying to seek a balance between the permanent principles and contingency plans for the stability and development of the society, which caused women’s humiliation and freedom. In reality, politicians and thinkers in ancient China had been transforming the concept of femininity itself to make it more adaptable to the social conditions of that time. This may be discussed in terms of three aspects. Firstly, the traditional concept of Chinese human relationships, including the ethical order, always emphasised the influence of individual behaviour on others and the overall stability and linked development of family, society and nation. Thus, both men and women, must be placed within this interrelated, interacting and cooperating relationship. Secondly, the association of family and country created an overlap of family and public affairs, which, objectively, facilitated the movement of women from the inner to the public arena. Thirdly, the notions of political and ethical morality and of men’s virtues and women’s virtues were integrated because of the union of family and nation. Therefore, typically virtuous women could be a source of encouragement for men and, furthermore, men formulated their virtues in the public space by formulating women’s virtues in the private space. The shaping of the gender image and concept of women in ancient China reflected the country’s changing cultural and gender norms. Chinese femininity and lifestyles, like Chinese history, were a continuous presence in the society but were also constantly changing. Through this study, it could be noted that Chinese women were not hidden and that their subjectivity and the concepts motivating them were not merely devised by a male-dominated society and culture.
Resumo:
Background: Spirituality is fundamental to all human beings, existing within a person, and developing until death. This research sought to operationalise spirituality in a sample of individuals with chronic illness. A review of the conceptual literature identified three dimensions of spirituality: connectedness, transcendence, and meaning in life. A review of the empirical literature identified one instrument that measures the three dimensions together. Yet, recent appraisals of this instrument highlighted issues with item formulation and limited evidence of reliability and validity. Aim: The aim of this research was to develop a theoretically-grounded instrument to measure spirituality – the Spirituality Instrument-27 (SpI-27). A secondary aim was to psychometrically evaluate this instrument in a sample of individuals with chronic illness (n=249). Methods: A two-phase design was adopted. Phase one consisted of the development of the SpI-27 based on item generation from a concept analysis, a literature review, and an instrument appraisal. The second phase established the psychometric properties of the instrument and included: a qualitative descriptive design to establish content validity; a pilot study to evaluate the mode of administration; and a descriptive correlational design to assess the instrument’s reliability and validity. Data were analysed using SPSS (Version 18). Results: Results of exploratory factor analysis concluded a final five-factor solution with 27 items. These five factors were labelled: Connectedness with Others, Self-Transcendence, Self-Cognisance, Conservationism, and Connectedness with a Higher Power. Cronbach’s alpha coefficients ranged from 0.823 to 0.911 for the five factors, and 0.904 for the overall scale, indicating high internal consistency. Paired-sample t-tests, intra-class correlations, and weighted kappa values supported the temporal stability of the instrument over 2 weeks. A significant positive correlation was found between the SpI-27 and the Spirituality Index of Well-Being, providing evidence for convergent validity. Conclusion: This research addresses a call for a theoretically-grounded instrument to measure spirituality.
Resumo:
Hard-line anti-communists in the United States recognised the potential for the Soviet invasion of Afghanistan in 1979 to embroil their super-power rival in a ‘Vietnam-like quagmire.’ Their covert operation to arm the mujahedeen is well documented. This dissertation argues that propaganda and public diplomacy were powerful and essential instruments of this campaign. It examines the protagonists of this strategy, their policies, initiatives and programmes offering a comprehensive analysis heretofore absent. It stretches from the dying days of the Carter administration when Zbigniew Brzezinski saw the ‘opportunity’ presented by the invasion to the Soviet’s withdrawal in 1989. The aim of these information strategies was to damage Soviet credibility and enhance that of the US, considered under threat from growing ‘moral equivalence’ amongst international publics. The conflict could help the US regain strategic advantage in South Asia undermined by the ‘loss’ of Iran. The Reagan administration used it to justify the projection of US military might that it believed was eviscerated under Carter and emasculated by the lingering legacy of Vietnam. The research engages with source material from the Reagan Presidential Library, the United States Information Agency archives and the Library of Congress as well as a number of online archives. The material is multi-archival and multi-media including documentaries, booklets, press conferences, summit programmes and news-clips as well as national security policy documents and contemporaneous media commentary. It concludes that propaganda and public diplomacy were integral to the Reagan administration and other mujahedeen supporters’ determination to challenge the USSR. It finds that the conflict was used to justify military rearmament, further strategic aims and reassert US power. These Cold War machinations had a considerable impact on the course of the conflict and undermined efforts at resolution and reconciliation with profound implications for the future stability of Afghanistan and the world.
Resumo:
For pt.I. see ibid. vol.1, p.301 (1985). In the first part of this work a general definition of an inverse problem with discrete data has been given and an analysis in terms of singular systems has been performed. The problem of the numerical stability of the solution, which in that paper was only briefly discussed, is the main topic of this second part. When the condition number of the problem is too large, a small error on the data can produce an extremely large error on the generalised solution, which therefore has no physical meaning. The authors review most of the methods which have been developed for overcoming this difficulty, including numerical filtering, Tikhonov regularisation, iterative methods, the Backus-Gilbert method and so on. Regularisation methods for the stable approximation of generalised solutions obtained through minimisation of suitable seminorms (C-generalised solutions), such as the method of Phillips (1962), are also considered.
Resumo:
In semilevitation melting, a cylindrical metal ingot is melted by a coaxial a.c. induction coil. A watercooled solid base supports the ingot, while the top and side free surface is confined by the magnetic forces as the melting front progresses. The dynamic interplay between gravity, hydrodynamic stress, and the Lorentz force in the fluid determines the instantaneous free surface shape. The coupled nonstationary equations for turbulent flow, heat with phase change, and high-frequency electromagnetic field are solved numerically for the axisymmetric time-dependent domain by a continuous mesh transformation, using a pseudospectral method. Results are obtained for the two actually existing coil configurations and several validation cases.
Resumo:
A modeling strategy is presented to solve the governing equations of fluid flow, temperature (with solidification), and stress in an integrated manner. These equations are discretized using finite volume methods on unstructured grids, which provide the capability to represent complex domains. Both the cell-centered and vertex-based forms of the finite volume discretization procedure are explained, and the overall integrated solution procedure using these techniques with suitable solvers is detailed. Two industrial processes, based on the casting of metals, are used to demonstrate the capabilities of the resultant modeling framework. This manufacturing process requires a high degree of coupling between the governing physical equations to accurately predict potential defects. Comparisons between model predictions and experimental observations are given.
Resumo:
An MHD flow is considered which is relevant to horizontal Bridgman technique for crystal growth from a melt. In the unidirectional parallel flow approximation an analytical solution is found accounting for the finite rectangular cross section of the channel in the case of a vertical magnetic field. Numerical pseudo-spectral solutions are used in the cases of arbitrary magnetic field and gravity vector orientations. The vertical magnetic field (parallel to the gravity) is found to be he most effective to damp the flow, however, complicated flow profiles with "overvelocities" in the comers are typical in the case of a finite cross-section channel. The temperature distribution is shown to be dependent on the flow profile. The linear stability of the flow is investigated by use of the Chebyshev pseudospectral method. For the case of an infinite width channel the transversal rolls instability is investigated, and for the finite cross-section channel the longitudinal rolls instability is considered. The critical Gr number values are computed in the dependence of the Ha number and the wave number or the aspect ratio in the case of finite section.
Resumo:
The growth of computer power allows the solution of complex problems related to compressible flow, which is an important class of problems in modern day CFD. Over the last 15 years or so, many review works on CFD have been published. This book concerns both mathematical and numerical methods for compressible flow. In particular, it provides a clear cut introduction as well as in depth treatment of modern numerical methods in CFD. This book is organised in two parts. The first part consists of Chapters 1 and 2, and is mainly devoted to theoretical discussions and results. Chapter 1 concerns fundamental physical concepts and theoretical results in gas dynamics. Chapter 2 describes the basic mathematical theory of compressible flow using the inviscid Euler equations and the viscous Navier–Stokes equations. Existence and uniqueness results are also included. The second part consists of modern numerical methods for the Euler and Navier–Stokes equations. Chapter 3 is devoted entirely to the finite volume method for the numerical solution of the Euler equations and covers fundamental concepts such as order of numerical schemes, stability and high-order schemes. The finite volume method is illustrated for 1-D as well as multidimensional Euler equations. Chapter 4 covers the theory of the finite element method and its application to compressible flow. A section is devoted to the combined finite volume–finite element method, and its background theory is also included. Throughout the book numerous examples have been included to demonstrate the numerical methods. The book provides a good insight into the numerical schemes, theoretical analysis, and validation of test problems. It is a very useful reference for applied mathematicians, numerical analysts, and practice engineers. It is also an important reference for postgraduate researchers in the field of scientific computing and CFD.
Resumo:
The main goal of a cell stability MHD model like MHD-Valdis is to help locate the busbars around the cell in a way which leads to the generation of a magnetic field inside the cell that itself leads to a stable cell operation. Yet as far as the cell stability is concerned, the uniformity of the current density in the metal pad is also extremely important and can only be achieved with a correct busbar network sizing. This work compares the usage of a detailed ANSYS based 3D thermo-electric model with the one of the versatile 1D part of MHD-Valdis to help design a well balanced busbar network.
Resumo:
Bulk and interdendritic flow during solidification alters the microstructure development, potentially leading to the formation of defects. In this paper, a 3D numerical model is presented for the simulation of dendritic growth in the presence of fluid flow in both liquid and semi-solid zones during solidification. The dendritic growth was solved by the combination of a stochastic nucleation approach with a finite difference solution of the solute diffusion equation and. a projection method solution of the Navier-Stokes equations. The technique was applied first to simulate the growth of a single dendrite in 2D and 3D in an isothermal environment with forced fluid flow. Significant differences were found in the evolution of dendritic morphology when comparing the 2D and 3D results. In 3D the upstream arm has a faster growth velocity due to easier flow around the perpendicular arms. This also promotes secondary arm formation on the upstream arm. The effect of fluid flow on columnar dendritic growth and micro-segregation in constrained solidification conditions is then simulated. For constrained growth, 2D simulations lead to even greater inaccuracies as compared to 3D.
Resumo:
A 3D time-dependent model of the VAR process has been developed using CFD techniques. The model solves the coupled field equations for fluid flow, heat transfer (including phase change) and electromagnetic field, for both the electrode and the ingot. The motion of the electic arc 'preferred spot' can be specified based on observations. Correlations are sought between the local gap height, resulting from instantaneous liquid pool surface shape and electrode tip shape, and the arc motion. The detailed behaviour of the melting film on the electrode tip is studies using a spectral free surface technique, which allows investigation of the drops' detachment and drip shorts.
Resumo:
Purpose: A novel methodology has been introduced to effectively coat intravascular stents with sirolimus-loaded polymeric microparticles. Methods: Dry powders of the microparticulate formulation, consisting of non-erodible polymers, were produced by a supercritical, aerosol, solvent extraction system (ASES). A design of experiment (DOE) approach was conducted on the independent variables, such as organic/CO2 phase volume ratio, polymer weight and stirring-rate, while regression analysis was utilized to interpret the influence of all operational parameters on the dependent variable of particle size. The dry powders, so formed, entered an electric field created by corona charging and were sprayed on the earthed metal stent. Furthermore, the thermal stability of sirolimus was investigated to define the optimum conditions for fusion to the metal surfaces. Results: The electrostatic dry powder deposition technology (EDPDT) was used on the metal strut followed by fusion to produce uniform, reproducible and accurate coatings. The coated stents exhibited sustained release profiles over 25 days, similar to commercial products. EDPDT-coated stents displayed significant reduced platelet adhesion. Conclusions: EDPDT appeared to be a robust accurate and reproducible technology to coat eluting stents.
Resumo:
1. The results presented in this paper show that the exposure of mussels to a sublethal concentration of oil-derived aromatic hydrocarbons (30 μg 1−1) for a period of 4 months significantly decreases the protein level in the digestive gland of the animals (−17%). 2. The activity of the nuclear RNA polymerase I and II is also significantly decreased in the digestive gland of hydrocarbon-exposed mussels (−64% and −18%, respectively). 3. The RNAase(s) activity present in the nuclei from the digestive gland cells increases following the exposure of the mussels to aromatic hydrocarbons. This effect is particularly evident at high ionic strength [200 mM (NH4)2SO4]. 4. The analysis of some characteristics of the nuclear RNAase(s) (most of which is soluble and shows a maximum of activity at pH 4−5) could indicate that part of this hydrolytic enzyme may have a lysosomal origin. 5. This fact appears to be in agreement with the finding that in the mussels exposed for 4 months to aromatic hydrocarbons the lysosomal stability decreases drastically and the total content of lysosomal enzymes is significantly increased (+42.4%).
Resumo:
Laboratory studies were conducted to evaluate the interaction between bare and polymer-coated magnetic nanoparticles (MNPs) with various environmentally relevant carrying solutions including natural oceanic seawater with and without addition of algal exopolymeric substances (EPS). The MNPs were coated with three different stabilising agents, namely gum Arabic (GA-MNP), dextran (D-MNP) and carboxymethyl-dextran (CMD-MNP). The colloidal stability of the suspensions was evaluated over 48 h and we demonstrated that: (i) hydrodynamic diameters increased over time regardless of carrying solution for all MNPs except the GA-coated ones; however, the relative changes were carrying solution- and coat-dependent; (ii) polydispersity indexes of the freshly suspended MNPs are below 0.5 for all coated MNPs, unlike the much higher values obtained for the uncoated MNPs; (iii) freshly prepared MNP suspensions (both coated and uncoated) in Milli-Q (MQ) water show high colloidal stability as indicated by zeta-potential values below -30 mV, which however decrease in absolute value within 48 h for all MNPs regardless of carrying solution; (iv) EPS seems to "stabilise" the GA-coated and the CMD-coated MNPs, but not the uncoated or the D-coated MNPs, which form larger aggregates within 48 h; (v) despite this aggregation, iron (Fe)-leaching from MNPs is sustained over 48 h, but remained within the range of 3-9% of the total iron-content of the initially added MNPs regardless of suspension media and capping agent. The environmental implications of our findings and biotechnological applicability of MNPs are discussed.