875 resultados para texture segmentation
Resumo:
This inquiry reveals the crucial guidance of teachers toward surveying the capacity and needs of students, the formation of ideas, acting upon ideas, fostering connections, seeing potential, making judgments, and arranging conditions. Each aesthetic trace causes me to wonder how teachers learn to create experiences that foster student participation in the world aesthetically. The following considerations surface: • Given the emphasis in schools on outcomes and results, how do we encourage teachers to focus on acts of mind instead of end products in their work with students? • Given the orientations toward technical rationality, to fixed sequence, how do we help teachers experience fluid, purposeful learning adventures with students in which the imagi¬nation is given room to play? • Given the tendency to conceive of planning in teaching as the deciding of everything in advance, how do we help teachers and students become attuned to making good judgments derived from within learning experiences? • How do we help teachers build dialogical multivoiced conversations instead of monolithic curriculum? • What do we do to recover the pleasure dwelling in subject matter? How do we get teachers and students to engage thoughtfully in meaningful learning as opposed to covering curriculum7 • A capacity to attend sensitively, to perceive the complexity of relationships coming together in any teaching/learning experience seems critical. How do we help teachers and students attend to the unity of a learning experience and the play of meanings that arises from such undergoing and doing? The traces, patterns, and texture evidenced locate tremendous hope and wondrous possibilities alive within aesthetic teaching/learning encounters. It is such aliveness I encountered in the grade 4 art classroom that opened this account and continues to compel my attention. Possibilities for teaching, learning, and teacher education emerge. I am convinced they are most worthy of continued pursuit.
Resumo:
This paper presents an optimum user-steered boundary tracking approach for image segmentation, which simulates the behavior of water flowing through a riverbed. The riverbed approach was devised using the image foresting transform with a never-exploited connectivity function. We analyze its properties in the derived image graphs and discuss its theoretical relation with other popular methods such as live wire and graph cuts. Several experiments show that riverbed can significantly reduce the number of user interactions (anchor points), as compared to live wire for objects with complex shapes. This paper also includes a discussion about how to combine different methods in order to take advantage of their complementary strengths.
Resumo:
This work proposes the development and study of a novel technique lot the generation of fractal descriptors used in texture analysis. The novel descriptors are obtained from a multiscale transform applied to the Fourier technique of fractal dimension calculus. The power spectrum of the Fourier transform of the image is plotted against the frequency in a log-log scale and a multiscale transform is applied to this curve. The obtained values are taken as the fractal descriptors of the image. The validation of the proposal is performed by the use of the descriptors for the classification of a dataset of texture images whose real classes are previously known. The classification precision is compared to other fractal descriptors known in the literature. The results confirm the efficiency of the proposed method. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A deep theoretical analysis of the graph cut image segmentation framework presented in this paper simultaneously translates into important contributions in several directions. The most important practical contribution of this work is a full theoretical description, and implementation, of a novel powerful segmentation algorithm, GC(max). The output of GC(max) coincides with a version of a segmentation algorithm known as Iterative Relative Fuzzy Connectedness, IRFC. However, GC(max) is considerably faster than the classic IRFC algorithm, which we prove theoretically and show experimentally. Specifically, we prove that, in the worst case scenario, the GC(max) algorithm runs in linear time with respect to the variable M=|C|+|Z|, where |C| is the image scene size and |Z| is the size of the allowable range, Z, of the associated weight/affinity function. For most implementations, Z is identical to the set of allowable image intensity values, and its size can be treated as small with respect to |C|, meaning that O(M)=O(|C|). In such a situation, GC(max) runs in linear time with respect to the image size |C|. We show that the output of GC(max) constitutes a solution of a graph cut energy minimization problem, in which the energy is defined as the a"" (a) norm ayenF (P) ayen(a) of the map F (P) that associates, with every element e from the boundary of an object P, its weight w(e). This formulation brings IRFC algorithms to the realm of the graph cut energy minimizers, with energy functions ayenF (P) ayen (q) for qa[1,a]. Of these, the best known minimization problem is for the energy ayenF (P) ayen(1), which is solved by the classic min-cut/max-flow algorithm, referred to often as the Graph Cut algorithm. We notice that a minimization problem for ayenF (P) ayen (q) , qa[1,a), is identical to that for ayenF (P) ayen(1), when the original weight function w is replaced by w (q) . Thus, any algorithm GC(sum) solving the ayenF (P) ayen(1) minimization problem, solves also one for ayenF (P) ayen (q) with qa[1,a), so just two algorithms, GC(sum) and GC(max), are enough to solve all ayenF (P) ayen (q) -minimization problems. We also show that, for any fixed weight assignment, the solutions of the ayenF (P) ayen (q) -minimization problems converge to a solution of the ayenF (P) ayen(a)-minimization problem (ayenF (P) ayen(a)=lim (q -> a)ayenF (P) ayen (q) is not enough to deduce that). An experimental comparison of the performance of GC(max) and GC(sum) algorithms is included. This concentrates on comparing the actual (as opposed to provable worst scenario) algorithms' running time, as well as the influence of the choice of the seeds on the output.
Resumo:
This paper compares the effectiveness of the Tsallis entropy over the classic Boltzmann-Gibbs-Shannon entropy for general pattern recognition, and proposes a multi-q approach to improve pattern analysis using entropy. A series of experiments were carried out for the problem of classifying image patterns. Given a dataset of 40 pattern classes, the goal of our image case study is to assess how well the different entropies can be used to determine the class of a newly given image sample. Our experiments show that the Tsallis entropy using the proposed multi-q approach has great advantages over the Boltzmann-Gibbs-Shannon entropy for pattern classification, boosting image recognition rates by a factor of 3. We discuss the reasons behind this success, shedding light on the usefulness of the Tsallis entropy and the multi-q approach. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Corn grits that were supplemented with isovaleraldehyde, ethyl butyrate, butyric acid and flavour enhancers were extruded under different processing conditions. Volatile compounds retained in the extrudates were isolated by dynamic headspace and analysed using gas chromatographymass spectrometry. The expansion ratio, density and cut force to break down the extrudates were evaluated and aroma intensity was assessed using a multisample difference test. Butyric acid showed the greatest retention (96.4%), regardless of the extrusion conditions. All compounds were better retained when samples were extruded at 20% feed moisture and 90 degrees C processing temperature (2.981.0%), conditions that also resulted in greater aromatic intensity (moderate to moderate-strong intensity). The addition of volatile compounds reduced the expansion ratio and cut force, whereas the addition of flavour enhancers increased the expansion ratio but reduced ethyl butyrate and butyric acid retention.
Resumo:
A computational pipeline combining texture analysis and pattern classification algorithms was developed for investigating associations between high-resolution MRI features and histological data. This methodology was tested in the study of dentate gyrus images of sclerotic hippocampi resected from refractory epilepsy patients. Images were acquired using a simple surface coil in a 3.0T MRI scanner. All specimens were subsequently submitted to histological semiquantitative evaluation. The computational pipeline was applied for classifying pixels according to: a) dentate gyrus histological parameters and b) patients' febrile or afebrile initial precipitating insult history. The pipeline results for febrile and afebrile patients achieved 70% classification accuracy, with 78% sensitivity and 80% specificity [area under the reader observer characteristics (ROC) curve: 0.89]. The analysis of the histological data alone was not sufficient to achieve significant power to separate febrile and afebrile groups. Interesting enough, the results from our approach did not show significant correlation with histological parameters (which per se were not enough to classify patient groups). These results showed the potential of adding computational texture analysis together with classification methods for detecting subtle MRI signal differences, a method sufficient to provide good clinical classification. A wide range of applications of this pipeline can also be used in other areas of medical imaging. Magn Reson Med, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
The effect of the addition of passion fruit peel powder (PFPP) on the fermentation kinetics and texture parameters, post-acidification and bacteria counts of probiotic yoghurts made with two milk types were evaluated during 28 days of storage at 4 degrees C. Milks were fermented by Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (CY340), and one strain of probiotic bacteria: Lactobacillus acidophilus (L10 and NCFM), Bifidobacterium animalis subsp. lactis (8104 and HN019). The addition of PFPP reduced significantly fermentation time of skim milk co-fermented by the strains L10, NCFM and HN019. At the end of 28-day shelf-life, counts of B. lactis Bl04 were about 1 Log CFU mL(-1) higher in whole yoghurt fermented with PFPP regarding its control but, in general, the addition of PFPP had less influence on counts than the milk type itself. The titratable acidity in yoghurts with PFPP was significantly higher than in their respective controls, and in skim yoghurts higher than in the whole ones. The PFPP increased firmness, consistency (except for the NCFM strain of L acidophilus) and cohesiveness of all skim yoghurts. The results point out the suitability of using passion fruit by-product in the formulation of both skim and whole probiotic yoghurts. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Bilayer segmentation of live video in uncontrolled environments is an essential task for home applications in which the original background of the scene must be replaced, as in videochats or traditional videoconference. The main challenge in such conditions is overcome all difficulties in problem-situations (e. g., illumination change, distract events such as element moving in the background and camera shake) that may occur while the video is being captured. This paper presents a survey of segmentation methods for background substitution applications, describes the main concepts and identifies events that may cause errors. Our analysis shows that although robust methods rely on specific devices (multiple cameras or sensors to generate depth maps) which aid the process. In order to achieve the same results using conventional devices (monocular video cameras), most current research relies on energy minimization frameworks, in which temporal and spacial information are probabilistically combined with those of color and contrast.
Resumo:
Abstract Background Atherosclerosis causes millions of deaths, annually yielding billions in expenses round the world. Intravascular Optical Coherence Tomography (IVOCT) is a medical imaging modality, which displays high resolution images of coronary cross-section. Nonetheless, quantitative information can only be obtained with segmentation; consequently, more adequate diagnostics, therapies and interventions can be provided. Since it is a relatively new modality, many different segmentation methods, available in the literature for other modalities, could be successfully applied to IVOCT images, improving accuracies and uses. Method An automatic lumen segmentation approach, based on Wavelet Transform and Mathematical Morphology, is presented. The methodology is divided into three main parts. First, the preprocessing stage attenuates and enhances undesirable and important information, respectively. Second, in the feature extraction block, wavelet is associated with an adapted version of Otsu threshold; hence, tissue information is discriminated and binarized. Finally, binary morphological reconstruction improves the binary information and constructs the binary lumen object. Results The evaluation was carried out by segmenting 290 challenging images from human and pig coronaries, and rabbit iliac arteries; the outcomes were compared with the gold standards made by experts. The resultant accuracy was obtained: True Positive (%) = 99.29 ± 2.96, False Positive (%) = 3.69 ± 2.88, False Negative (%) = 0.71 ± 2.96, Max False Positive Distance (mm) = 0.1 ± 0.07, Max False Negative Distance (mm) = 0.06 ± 0.1. Conclusions In conclusion, by segmenting a number of IVOCT images with various features, the proposed technique showed to be robust and more accurate than published studies; in addition, the method is completely automatic, providing a new tool for IVOCT segmentation.
Resumo:
A 7.4 mm thick strip of 3003 aluminum alloy produced by the industrial twin-roll casting (TRC) process was homogenized at 500 °C for 12 hours, after which it was cold rolled in two conditions: 1) to reduce the strip's thickness by 67%, and 2) to reduce it by 91%. The alloy was annealed at 400 °C for 1 hour in both conditions. The results revealed that a rotated cube texture, the {001}<110> component, predominated in the as-cast condition and was transformed into brass, copper and S type textures during the cold rolling process. There was practically no difference between the deformation textures at the two thickness reductions.
Resumo:
The parenchymal distribution of the splenic artery was studied in order to obtain anatomical basis for partial splenectomy. Thirty two spleens were studied, 26 spleens of healthy horses weighing 320 to 450kg, aged 3 to 12 years and 6 spleens of fetus removed from slaughterhouse. The spleens were submitted to arteriography and scintigraphy in order to have their vascular pattern examined and compared to the external aspect of the organ aiming establish anatomo-surgical segments. All radiographs were photographed with a digital camera and the digital images were submitted to a measuring system for comparative analysis of areas of dorsal and ventral anatomo-surgical segments. Anatomical investigations into the angioarchitecture of the equine spleen showed a paucivascular area, which coincides with a thinner external area, allowing the organ to be divided in two anatomo-surgical segments of approximately 50% of the organ each.
Resumo:
This work proposes a novel texture descriptor based on fractal theory. The method is based on the Bouligand- Minkowski descriptors. We decompose the original image recursively into four equal parts. In each recursion step, we estimate the average and the deviation of the Bouligand-Minkowski descriptors computed over each part. Thus, we extract entropy features from both average and deviation. The proposed descriptors are provided by concatenating such measures. The method is tested in a classification experiment under well known datasets, that is, Brodatz and Vistex. The results demonstrate that the novel technique achieves better results than classical and state-of-the-art texture descriptors, such as Local Binary Patterns, Gabor-wavelets and co-occurrence matrix.
Resumo:
In this paper,we present a novel texture analysis method based on deterministic partially self-avoiding walks and fractal dimension theory. After finding the attractors of the image (set of pixels) using deterministic partially self-avoiding walks, they are dilated in direction to the whole image by adding pixels according to their relevance. The relevance of each pixel is calculated as the shortest path between the pixel and the pixels that belongs to the attractors. The proposed texture analysis method is demonstrated to outperform popular and state-of-the-art methods (e.g. Fourier descriptors, occurrence matrix, Gabor filter and local binary patterns) as well as deterministic tourist walk method and recent fractal methods using well-known texture image datasets.
Resumo:
The strength and durability of materials produced from aggregates (e.g., concrete bricks, concrete, and ballast) are critically affected by the weathering of the particles, which is closely related to their mineral composition. It is possible to infer the degree of weathering from visual features derived from the surface of the aggregates. By using sound pattern recognition methods, this study shows that the characterization of the visual texture of particles, performed by using texture-related features of gray scale images, allows the effective differentiation between weathered and nonweathered aggregates. The selection of the most discriminative features is also performed by taking into account a feature ranking method. The evaluation of the methodology in the presence of noise suggests that it can be used in stone quarries for automatic detection of weathered materials.