962 resultados para taper stem
Resumo:
Isolation of mesenchymal stem cells (MSCs) from umbilical cord blood (UCB) from full-term deliveries is a laborious, time-consuming process that results in a low yield of cells. In this study we identified parameters that can be helpful for a successful isolation of UCB-MSCs. According to our findings, chances for a well succeeded isolation of these cells are higher when MSCs were isolated from UCB collected from normal full-term pregnancies that did not last over 37 weeks. Besides the duration of pregnancy, blood volume and storage period of the UCB should also be considered for a successful isolation of these cells. Here, we found that the ideal blood volume collected should be above 80 mL and the period of storage should not exceed 6 h. We characterized UCB-MSCs by morphologic, immunophenotypic, protein/gene expression and by adipogenic differentiation potential. Isolated UCB-MSCs showed fibroblast-like morphology and the capacity of differentiating into adipocyte-like cells. Looking for markers of the undifferentiated status of UCB-MSCs, we analyzed the UCB-MSCs' protein expression profile along different time periods of the differentiation process into adipocyte-like cells. Our results showed that there is a decrease in the expression of the markers CD73, CD90, and CD105 that correlates to the degree of differentiation of UCB-MSCs We suggest that CD90 can be used as a mark to follow the differentiation commitment degree of MSCs. Microarray results showed an up-regulation of genes related to the adipogenesis process and to redox metabolism in the adipocyte-like differentiated MSCs. Our study provides information on a group of parameters that may help with successful isolation and consequently with characterization of the differentiated/undifferentiated status of UCB-MSCs, which will be useful to monitor the differentiation commitment of UCB-MSC and further facilitate the application of those cells in stem-cell therapy.
Resumo:
Little is known about the histogenesis of the odontogenic myxoma (OM). Dental pulp stem cells could be candidate precursors of OM because both OM and the dental pulp share the same embryological origin: the dental papilla. For the purpose of comparing OM and stem cells, this study analyzed the expression of two proteins related to OM invasiveness (MMP-2 and hyaluronic acid) in human immature dental pulp stern cells (hIDPSCs). Three lineages of hIDPSCs from deciduous and permanent teeth were used in this study. Immunofluorescence revealed positive reactions for MMP-2 and hyaluronic acid (HA) in all hIDPSCs. MMP-2 appeared as dots throughout the cytoplasm, whereas HA appeared either as diffuse and irregular dots or as short fibrils throughout the cytoplasm and outside the cell bodies. The gene expression profile of each cell lineage was evaluated using RT-PCR analysis, and HA was expressed more intensively than MMP-2. HA expression was similar among the three hIDPSCs lineages, whereas MMP-2 expression was higher in DL-1 than in the other cell lines. The expression of proteins related to OM invasiveness in hIDPSCs could indicate that OM originates from dental pulp stem cells.
Resumo:
Objective: The objective of this study was to analyze the incidence of and risk factors for healthcare-associated infections (HAI) among hematopoietic stem cell transplantation (HSCT) patients, and the impact of such infections on mortality during hospitalization. Methods: We conducted a 9-year (2001-2009) retrospective cohort study including patients submitted to HSCT at a reference center in Sao Paulo, Brazil. The incidence of HAI was calculated using days of neutropenia as the denominator. Data were analyzed using EpiInfo 3.5.1. Results: Over the 9-year period there were 429 neutropenic HSCT patients, with a total of 6816 days of neutropenia. Bloodstream infections (BSI) were the most frequent infection, presenting in 80 (18.6%) patients, with an incidence of 11.7 per 1000 days of neutropenia. Most bacteremia was due to Gram-negative bacteria: 43 (53.8%) cases were caused by Gram-negative species, while 33 (41.2%) were caused by Gram-positive species, and four (5%) by fungal species. Independent risk factors associated with HAI were prolonged neutropenia (odds ratio (OR) 1.07, 95% confidence interval (CI) 1.04-1.10) and duration of fever (OR 1.20, 95% CI 1.12-1.30). Risk factors associated with death in multivariate analyses were age (OR 1.02, 95% CI 1.01-1.43), being submitted to an allogeneic transplant (OR 3.08, 95% CI 1.68-5.56), a microbiologically documented infection (OR 2.96, 95% CI 1.87-4.6), invasive aspergillosis disease (OR 2.21, 95% CI 1.1-4.3), and acute leukemias (OR 2.24, 95% CI 1.3-3.6). Conclusions: BSI was the most frequent HAI, and there was a predominance of Gram-negative microorganisms. Independent risk factors associated with HAI were duration of neutropenia and fever, and the risk factors for a poor outcome were older age, type of transplant (allogeneic), the presence of a microbiologically documented infection, invasive aspergillosis, and acute leukemia. Further prospective studies with larger numbers of patients may confirm the role of these risk factors for a poor clinical outcome and death in this transplant population. (C) 2012 Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
Resumo:
Aberrant expression of stem cell-related genes in tumors may confer more primitive and aggressive traits affecting clinical outcome. Here, we investigated expression and prognostic value of the neural stem cell marker CD133, as well as of the pluripotency genes LIN28 and OCT4 in 37 samples of pediatric medulloblastoma, the most common and challenging type of embryonal tumor. While most medulloblastoma samples expressed CD133 and LIN28, OCT4 expression was found to be more sporadic, with detectable levels occurring in 48% of tumors. Expression levels of OCT4, but not CD133 or LIN28, were significantly correlated with shorter survival (P <= 0.0001). Median survival time of patients with tumors hyperexpressing OCT4 and tumors displaying low/undetectable OCT4 expression were 6 and 153 months, respectively. More importantly, when patients were clinically stratified according to their risk of tumor recurrence, positive OCT4 expression in primary tumor specimens could discriminate patients classified as average risk but which further deceased within 5 years of diagnosis (median survival time of 28 months), a poor clinical outcome typical of high risk patients. Our findings reveal a previously unknown prognostic value for OCT4 expression status in medulloblastoma, which might be used as a further indicator of poor survival and aid postoperative treatment selection, with a particular potential benefit for clinically average risk patients.
Resumo:
The direct induction of adventitious buds and somatic embryos from explants is a morphogenetic process that is under the influence of exogenous plant growth regulators and its interactions with endogenous phytohormones. We performed an in vitro histological analysis in peach palm (Bactris gasipaes Kunth) shoot apexes and determined that the positioning of competent cells and their interaction with neighboring cells, under the influence of combinations of exogenously applied growth regulators (NAA/BAP and NAA/TDZ), allows the pre-procambial cells (PPCs) to act in different morphogenic pathways to establish niche competent cells. It is likely that there has been a habituation phenomenon during the regeneration and development of the microplants. This includes promoting the tillering of primary or secondary buds due to culturing in the absence of NAA/BAP or NAA/TDZ after a period in the presence of these growth regulators. Histological analyses determined that the adventitious roots were derived from the dedifferentiation of the parenchymal cells located in the basal region of the adventitious buds, with the establishment of rooting pole, due to an auxin gradient. Furthermore, histological and histochemical analyses allowed us to characterize how the PPCs provide niches for multipotent, pluripotent and totipotent stem-like cells for vascular differentiation, organogenesis and somatic embryogenesis in the peach palm. The histological and histochemical analyses also allowed us to detect the unicellular or multicellular origin of somatic embryogenesis. Therefore, our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells. Key message Our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells.
Resumo:
Adipose-derived mesenchymal stem cells (ADMSCs) display immunosuppressive properties, suggesting a promising therapeutic application in several autoimmune diseases, but their role in type 1 diabetes (T1D) remains largely unexplored. The aim of this study was to investigate the immune regulatory properties of allogeneic ADMSC therapy in T cell-mediated autoimmune diabetes in NOD mice. ADMSC treatment reversed the hyperglycemia of early-onset diabetes in 78% of diabetic NOD mice, and this effect was associated with higher serum insulin, amylin, and glucagon-like peptide 1 levels compared with untreated controls. This improved outcome was associated with downregulation of the CD4(+) Th1-biased immune response and expansion of regulatory T cells (Tregs) in the pancreatic lymph nodes. Within the pancreas, inflammatory cell infiltration and interferon-gamma levels were reduced, while insulin, pancreatic duodenal homeobox-1, and active transforming growth factor-beta 1 expression were increased. In vitro, ADMSCs induced the expansion/proliferation of Tregs in a cell contact-dependent manner mediated by programmed death ligand 1. In summary, ADMSC therapy efficiently ameliorates autoimmune diabetes pathogenesis in diabetic NOD mice by attenuating the Th1 immune response concomitant with the expansion/proliferation of Tregs, thereby contributing to the maintenance of functional beta-cells. Thus, this study may provide a new perspective for the development of ADMSC-based cellular therapies for T1D. Diabetes 61:2534-2545, 2012
Resumo:
BACKGROUND CD90+ prostate cancer-associated (CP) stromal cells represent a diseased cell type found only in tumor tissue. They differ from their normal counterpart in gene expression and inductive signaling. Genetic reprogramming by induced pluripotent stem (iPS) cell technology can effectively change adult cells into stem-like cells through wholesale alteration of the gene expression program. This technology might be used to erase the abnormal gene expression of diseased cells. The resultant iPS cells would no longer express the disease phenotype, and behave like stem cells. METHODS CP stromal cells, isolated from tumor tissue of a surgically resected prostate by anti-CD90-mediated sorting and cultured in vitro, were transfected with in vitro packaged lentiviral expression vectors containing stem cell transcription factor genes POU5F1, LIN28, NANOG, and SOX2. RESULTS Alkaline phosphatase-positive iPS cells were obtained in about 3 weeks post-transfection at a frequency of 10-4. Their colony morphology was indistinguishable from that of human embryonic stem (ES) cells. Transcriptome analysis showed a virtually complete match in gene expression between the iPS and ES cells. CONCLUSIONS Genes of CP stromal cells could be fully inactivated by genetic reprogramming. As a consequence, the disease phenotype was cured. Prostate 72:14531463, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Clinical application of human embryonic stem cells will be possible, when cell lines are created under xeno-free and defined conditions. We aimed to establish methodologies for parthenogenetic activation, culture to blastocyst and mechanical isolation of the inner cell mass (ICM) using bovine oocytes, as a model for derivation and proliferation of human embryonic stem cells under defined xeno-free culture conditions. Cumulus-oocyte-complexes were in vitro matured and activated using Ca(2+)Ionophore and 6-DMAP or in vitro fertilized (IVF). Parthenotes and biparental embryos were cultured to blastocysts, when their ICM was mechanically isolated and placed onto a substrate of fibronectin in StemProA (R) medium. After attachment, primary colonies were left to proliferate and stained for pluripotency markers, alkaline phosphatase and Oct-4. Parthenogenesis and fertilization presented significantly different success rates (91 and 79 %, respectively) and blastocyst formation (40 and 43 %, respectively). ICMs from parthenogenetic and IVF embryos formed primary and expanded colonies at similar rates (39 % and 33 %, respectively). Six out of eight parthenogenetic colonies tested positive for alkaline phosphatase. Three colonies were analyzed for Oct-4 and they all tested positive for this pluripotency marker. Our data show that Ca2+ Ionophore, and 6-DMAP are efficient in creating large numbers of blastocysts to be employed as a model for human oocyte activation and embryo development. After mechanical isolation, parthenogetic derived ICMs showed a good rate of derivation in fibronectin and Stem-Pro forming primary and expanded colonies of putative embryonic stem cells. This methodology may be a good strategy for parthenogenetic activation of discarded human oocytes and derivation in defined conditions for future therapeutic interventions.
Resumo:
Telomere attrition induces cell senescence and apoptosis. We hypothesized that age-adjusted pretransplantation telomere length might predict treatment-related mortality (TRM) after hematopoietic stem cell transplantation (HSCT). Between 2000 and 2005, 178 consecutive patients underwent HSCT from HLA-identical sibling donors after myeloablative conditioning regimens, mainly for hematologic malignancies (n = 153). Blood lymphocytes' telomere length was measured by real-time quantitative PCR before HSCT. Age-adjusted pretransplantation telomere lengths were analyzed for correlation with clinical outcomes. After age adjustment, patients' telomere-length distribution was similar among all 4 quartiles except for disease stage. There was no correlation between telomere length and engraftment, GVHD, or relapse. The overall survival was 62% at 5 years (95% confidence interval [CI], 54-70). After a median follow-up of 51 months (range, 1-121 months), 43 patients died because of TRM. The TRM rate inversely correlated with telomere length. TRM in patients in the first (lowest telomere length) quartile was significantly higher than in patients with longer telomeres (P = .017). In multivariate analysis, recipients' age (hazard ratio, 1.1; 95% CI, .0-1.1; P = .0001) and age-adjusted telomere length (hazard ratio, 0.4; 95% CI; 0.2-0.8; P = .01) were independently associated with TRM. In conclusion, age-adjusted recipients' telomere length is an independent biologic marker of TRM after HSCT. (Blood. 2012;120(16):3353-3359)
Resumo:
Human mesenchymal stem cells (hMSCs) are adult multipotent cells that have high therapeutic potential due to their immunological properties. They can be isolated from several different tissues with bone marrow (BM) being the most common source. Because the isolation procedure is invasive, other tissues such as human umbilical cord vein (UCV) have been considered. However, their interchangeability remains unclear. In the present study, total protein extracts of BM-hMSCs and UCV-hMSCs were quantitatively compared using gel-LC-MS/MS. Previous SAGE analysis of the same cells was re-annotated to enable comparison and combination of these two data sets. We observed a more than 63% correlation between proteomic and transcriptomic data. In silico analysis of highly expressed genes in cells of both origins suggests that they can be modulated by microRNA, which can change protein abundance. Our results showed that MSCs from both tissues shared high similarity in metabolic and functional processes relevant to their therapeutic potential, especially in the immune system process, response to stimuli, and processes related to the delivery of the hMSCs to a given tissue, such as migration and adhesion. Hence, our results support the idea that the more accessible UCV could be a potentially less invasive source of MSCs.
Resumo:
Background:The golden retriever muscular dystrophy (GRMD) dogs represent the best available animal model for therapeutic trials aiming at the future treatment of human Duchenne muscular dystrophy (DMD). We have obtained a rare litter of six GRMD dogs (3 males and 3 females) born from an affected male and a carrier female which were submitted to a therapeutic trial with adult human stem cells to investigate their capacity to engraft into dogs muscles by local as compared to systemic injection without any immunosuppression. Methods Human Immature Dental Pulp Stem Cells (hIDPSC) were transplanted into 4 littermate dogs aged 28 to 40 days by either arterial or muscular injections. Two non-injected dogs were kept as controls. Clinical translation effects were analyzed since immune reactions by blood exams and physical scores capacity of each dog. Samples from biopsies were checked by immunohistochemistry (dystrophin markers) and FISH for human probes. Results and Discussion We analyzed the cells' ability in respect to migrate, engraftment, and myogenic potential, and the expression of human dystrophin in affected muscles. Additionally, the efficiency of single and consecutive early transplantation was compared. Chimeric muscle fibers were detected by immunofluorescence and fluorescent in situ hybridisation (FISH) using human antibodies and X and Y DNA probes. No signs of immune rejection were observed and these results suggested that hIDPSC cell transplantation may be done without immunosuppression. We showed that hIDPSC presented significant engraftment in GRMD dog muscles, although human dystrophin expression was modest and limited to several muscle fibers. Better clinical condition was also observed in the dog, which received monthly arterial injections and is still clinically stable at 25 months of age. Conclusion Our data suggested that systemic multiple deliveries seemed more effective than local injections. These findings open important avenues for further researches.
Resumo:
The dystrophin gene, located at Xp21, codifies dystrophin, which is part of a protein complex responsible for the membrane stability of muscle cells. Its absence on muscle causes Duchenne Muscular Dystrophy (DMD), a severe disorder, while a defect of muscle dystrophin causes Becker Muscular Dystrophy (DMB), a milder disease. The replacement of the defective muscle through stem cells transplantation is a possible future treatment for these patients. Our objective was to analyze the potential of CD34+ stem cells from umbilical cord blood to differentiate in muscle cells and express dystrophin, in vitro. Protein expression was analyzed by Immunofluorescence, Western Blotting (WB) and Reverse Transcriptase – Polymerase Chain Reaction (RT-PCR). CD34+ stem cells and myoblasts from a DMD affected patient started to fuse with muscle cells immediately after co-cultures establishment. Differentiation in mature myotubes was observed after 15 days and dystrophin-positive regions were detected through Immunofluorescence analysis. However, WB or RT-PCR analysis did not detect the presence of normal dystrophin in co-cultures of CD34+ and DMD or DMB affected patients' muscle cells. In contrast, some CD34+ stem cells differentiated in dystrophin producers' muscle cells, what was observed by WB, reinforcing that this progenitor cell has the potential to originate muscle dystrophin in vitro, and not just in vivo like reported before.
Resumo:
Stem cell therapy is one of the most promising treatments for the near future. It is expected that this kind of therapy can ameliorate or even reverse some diseases. With regard to type 1 diabetes, studies analyzing the therapeutic effects of stem cells in humans began in 2003 in the Hospital das Clínicas of the Faculty of Medicine of Ribeirão Preto - SP USP, Brazil, and since then other centers in different countries started to randomize patients in their clinical trials. Herein we summarize recent data about beta cell regeneration, different ways of immune intervention and what is being employed in type 1 diabetic patients with regard to stem cell repertoire to promote regeneration and/or preservation of beta cell mass.
Resumo:
Abstract Background The use of stem cells to treat type 1 diabetes mellitus has been proposed for many years, both to downregulate the immune system and to provide β cell regeneration. Conclusion High dose immunosuppression followed by autologous hematopoietic stem cell transplantation is able to induce complete remission (insulin independence) in most patients with early onset type 1 diabetes mellitus.
Resumo:
Financial support: CTC, INCTC, FAPESP, FUNDHERP and CNPq.