948 resultados para switching regimes
Resumo:
Purpose – The purpose of this paper is to consider hierarchical control as a mode of governance, and analyses the extent of control exhibited by central government over local government through the best value (BV) and comprehensive performance assessment (CPA) performance regimes. Design/methodology/approach – This paper utilises Ouchi's framework and, specifically, his articulation of bureaucratic or hierarchical control in the move towards achievement of organisational objectives. Hierarchical control may be inferred from the extent of “command and control” by Central Government, use of rewards and sanctions, and alignment to government priorities and discrimination of performance. Findings – CPA represents a more sophisticated performance regime than BV in the governance of local authorities by central government. In comparison to BV, CPA involved less scope for dialogue with local government prior to introduction, closer inspection of and direction of support toward poorer performing authorities, and more alignment to government priorities in the weightings attached to service blocks. Originality/value - The paper focuses upon the hierarchic/bureaucratic mode of governance as articulated by Ouchi and expands on this mode in order to analyse shifts in performance regimes in the public sector.
Resumo:
In this paper, we demonstrate a fast switching dual polarization DDQPSK packet switched receiver with very short waiting times. The system employs mth power DDQPSK decoding for high frequency offset tolerance, and Stokes parameter estimation for robust polarization demultiplexing.
Resumo:
We review recent progress in the research on nonlinear mechanisms of pulse generation in passively mode-locked fibre lasers. These include parabolic self-similar pulse mode-locking, a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on the possibility of achieving various regimes of advanced temporal waveform generation in a mode-locked fibre laser by inclusion of a spectral filter into the laser cavity.
Resumo:
The traffic carried by core optical networks grows at a steady but remarkable pace of 30-40% year-over-year. Optical transmissions and networking advancements continue to satisfy the traffic requirements by delivering the content over the network infrastructure in a cost and energy efficient manner. Such core optical networks serve the information traffic demands in a dynamic way, in response to requirements for shifting of traffics demands, both temporally (day/night) and spatially (business district/residential). However as we are approaching fundamental spectral efficiency limits of singlemode fibers, the scientific community is pursuing recently the development of an innovative, all-optical network architecture introducing the spatial degree of freedom when designing/operating future transport networks. Spacedivision- multiplexing through the use of bundled single mode fibers, and/or multi-core fibers and/or few-mode fibers can offer up to 100-fold capacity increase in future optical networks. The EU INSPACE project is working on the development of a complete spatial-spectral flexible optical networking solution, offering the network ultra-high capacity, flexibility and energy efficiency required to meet the challenges of delivering exponentially growing traffic demands in the internet over the next twenty years. In this paper we will present the motivation and main research activities of the INSPACE consortium towards the realization of the overall project solution. © 2014 Copyright SPIE.
Resumo:
While the relationship marketing literature acknowledges the importance of switching costs for increasing customer retention, little is known about its relevance in industrial markets. In particular, it is unclear whether switching costs, and associated dimensions, impact on behavioral outcomes of buyer–seller relationships in business-to-business (B2B) markets. In order to contribute to theory development in this important area, our research first explores the dimensions of switching costs for the B2B domain and also tests the relative impact of these dimensions on business customers' actual purchase behavior. Results suggest that switching costs in B2B settings are a multi-faceted construct, including (i) procedural, (ii) financial, and (iii) relational switching costs. Moreover, we find relational switching costs to be most important for securing B2B buyer–seller relationships since they impact a customer's (a) share-of-wallet, (b) cross-buying behavior, and (c) actual switching behavior. While procedural switching costs only influence share-of-wallet, financial switching costs solely impact customer's cross-buying behavior. These findings contribute to a better understanding on how to secure B2B buyer–seller relationships.
Resumo:
We investigate the use of different direct detection modulation formats in a wavelength switched optical network. We find the minimum time it takes a tunable sampled grating distributed Bragg reflector laser to recover after switching from one wavelength channel to another for different modulation formats. The recovery time is investigated utilizing a field programmable gate array which operates as a time resolved bit error rate detector. The detector offers 93 ps resolution operating at 10.7 Gb/s and allows for all the data received to contribute to the measurement, allowing low bit error rates to be measured at high speed. The recovery times for 10.7 Gb/s non-return-to-zero on–off keyed modulation, 10.7 Gb/s differentially phase shift keyed signal and 21.4 Gb/s differentially quadrature phase shift keyed formats can be as low as 4 ns, 7 ns and 40 ns, respectively. The time resolved phase noise associated with laser settling is simultaneously measured for 21.4 Gb/s differentially quadrature phase shift keyed data and it shows that the phase noise coupled with frequency error is the primary limitation on transmitting immediately after a laser switching event.
Resumo:
We demonstrate multiple-peaked switching in a nonlinear-optical loop mirror and present an experimental investigation of device cascading in the soliton regime based on a sequence of two independent nonlinear-optical loop mirrors. Cascading leads to an enhanced switching response with sharper switching edges, flattened peaks, and increased interpeak extinction ratios. We observe that pulses emerging from the cascade retain the sech2 temporal profile of a soliton with minimal degradation in the spectral characteristics.
Resumo:
We demonstrate a great variability of single-pulse (with only one pulse/wave-packet traveling along the cavity) generation regimes in fiber lasers passively mode-locked by non-linear polarization evolution (NPE) effect. Combining extensive numerical modeling and experimental studies, we identify multiple very distinct lasing regimes with a rich variety of dynamic behavior and a remarkably broad spread of key parameters (by an order of magnitude and more) of the generated pulses. Such a broad range of variability of possible lasing regimes necessitates developing techniques for control/adjustment of such key pulse parameters as duration, radiation spectrum, and the shape of the auto-correlation function. From a practical view point, availability of pulses/wave-packets with such different characteristics from the same laser makes it imperative to develop variability-aware designs with control techniques and methods to select appropriate application-oriented regimes. © 2014 The Authors.
Resumo:
We investigate the Kerr nonlinearity in a core-shell microspherical resonator fabricated from a silicon fiber. By exploiting the ultrafast wavelength shifting, sub-picosecond modulation is demonstrated. © OSA 2015.
Resumo:
We studied experimentally polarization dynamics in a carbon nanotube mode locked stretched pulse fiber laser. For the first time, polarization locked, regular and irregular polarization switching have been observed at the microsecond time scale. © 2014 OSA.
Resumo:
A hybrid silicon-core, silica-clad microspherical resonator has been fabricated from the semiconductor core fiber platform. Linear and nonlinear characterization of the resonator properties have shown it to exhibit advantageous properties associated with both materials, with the low loss cladding supporting high quality (Q) factor whispering gallery modes which can be tuned through the nonlinear response of the crystalline core. By exploiting the large wavelength shift associated with the Kerr nonlinearity, we have demonstrated all-optical modulation of a weak probe on the timescale of the femtosecond pump pulse. This novel geometry offers a route to ultra-low loss, high-Q silica-based resonators with enhanced functionality.
Resumo:
Policymakers are often confronted with problems that involve ambiguity and uncertainty (Zahariadis, 2003). In order to make sense of such problems and to identify possible solutions, they are on the lookout for policy ideas.
Resumo:
We show experimentally and numerically new transient lasing regime between stable single-pulse generation and noise-like generation. We characterize qualitatively all three regimes of single pulse generation per round-trip of all-normal-dispersion fiber lasers mode-locked due to effect of nonlinear polarization evolution. We study spectral and temporal features of pulses produced in all three regimes as well as compressibility of such pulses. Simple criteria are proposed to identify lasing regime in experiment. © 2012 Optical Society of America.
Resumo:
We present experimental measurements of intensity spatiotemporal dynamics in quasi-CW Raman fiber laser. Depending on the power, the laser operates in different spatio-temporal regimes varying from partial mode-locking near the generation threshold to almost stochastic radiation and a generation of short-lived pulses at high power. The transitions between the generation regimes are evident in intensity spatio-temporal dynamics. Two-dimensional auto-correlation functions provide an additional insight into temporal and spatial properties of the observed regimes.
Resumo:
Mode-locked fiber lasers provide convenient and reproducible experimental settings for the study of a variety of nonlinear dynamical processes. The complex interplay among the effects of gain/loss, dispersion and nonlinearity in a fiber cavity can be used to shape the pulses and manipulate and control the light dynamics and, hence, lead to different mode-locking regimes. Major steps forward in pulse energy and peak power performance of passively mode-locked fiber lasers have been made with the recent discovery of new nonlinear regimes of pulse generation, namely, dissipative solitons in all-normal-dispersion cavities and parabolic self-similar pulses (similaritons) in passive and active fibers. Despite substantial research in this field, qualitatively new phenomena are still being discovered. In this talk, we review recent progress in the research on nonlinear mechanisms of pulse generation in passively mode-locked fiber lasers. These include similariton mode-locking, a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on the possibility of achieving various regimes of advanced temporal waveform generation in a mode-locked fiber laser by inclusion of a spectral filter into the laser cavity.