943 resultados para susceptibility to infection
Resumo:
Marine mammals are often reported to possess reduced variation of major histocompatibility complex (MHC) genes compared with their terrestrial counterparts. We evaluated diversity at two MHC class II B genes, DQB and DRB, in the New Zealand sea lion (Phocarctos hookeri, NZSL) a species that has suffered high mortality owing to bacterial epizootics, using Sanger sequencing and haplotype reconstruction, together with next-generation sequencing. Despite this species' prolonged history of small population size and highly restricted distribution, we demonstrate extensive diversity at MHC DRB with 26 alleles, whereas MHC DQB is dimorphic. We identify four DRB codons, predicted to be involved in antigen binding, that are evolving under adaptive evolution. Our data suggest diversity at DRB may be maintained by balancing selection, consistent with the role of this locus as an antigen-binding region and the species' recent history of mass mortality during a series of bacterial epizootics. Phylogenetic analyses of DQB and DRB sequences from pinnipeds and other carnivores revealed significant allelic diversity, but little phylogenetic depth or structure among pinniped alleles; thus, we could neither confirm nor refute the possibility of trans-species polymorphism in this group. The phylogenetic pattern observed however, suggests some significant evolutionary constraint on these loci in the recent past, with the pattern consistent with that expected following an epizootic event. These data may help further elucidate some of the genetic factors underlying the unusually high susceptibility to bacterial infection of the threatened NZSL, and help us to better understand the extent and pattern of MHC diversity in pinnipeds.
Resumo:
Polymorphisms in chemokine receptors play an important role in the progression of cervical intraepithelial neoplasia (CIN) to cervical cancer (CC). Our study examined the association of CCR2-64I (rs1799864) andCCR5-Δ32 (rs333) polymorphisms with susceptibility to develop cervical lesion (CIN and CC) in a Brazilian population. The genotyping of 139 women with cervical lesions and 151 women without cervical lesions for the CCR2-64I and CCR5-Δ32 polymorphisms were performed using polymerase chain reaction-restriction fragment length polymorphism. The individuals carrying heterozygous or homozygous genotypes (GA+AA) for CCR2-64I polymorphisms seem to be at lower risk for cervical lesion [odds ratio (OR) = 0.37, p = 0.0008)]. The same was observed for the A allele (OR = 0.39, p = 0.0002), while no association was detected (p > 0.05) with CCR5-Δ32 polymorphism. Regarding the human papillomavirus (HPV) type, patients carrying the CCR2-64Ipolymorphism were protected against infection by HPV type 16 (OR = 0.35, p = 0.0184). In summary, our study showed a protective effect ofCCR2-64I rs1799864 polymorphism against the development of cervical lesions (CIN and CC) and in the susceptibility of HPV 16 infection.
Resumo:
Abstract In this study, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used as a rapid method to identify yeasts isolated from patients in Tunisian hospitals. When identification could not be exstablished with this procedure, sequencing of the internal transcribed spacer with 5.8S ribosomal DNA (rDNA) (ITS1-5.8S-ITS2) and D1/D2 domain of large-subunit (LSU rDNA) were employed as a molecular approach for species differentiation. Candida albicans was the dominant species (43.37% of all cases), followed by C. glabrata (16.55%), C. parapsilosis (13.23%), C. tropicalis (11.34%), C. dubliniensis (4.96%), and other species more rarely encountered in human diseases such as C. krusei, C. metapsilosis, C. lusitaniae, C. kefyr, C. palmioleophila, C. guilliermondii, C. intermedia, C. orthopsilosis, and C. utilis. In addition, other yeast species were obtained including Saccharomyces cerevisiae, Debaryomyces hansenii (anamorph known as C. famata), Hanseniaspora opuntiae, Kodamaea ohmeri, Pichia caribbica (anamorph known as C. fermentati), Trichosporon spp. and finally a novel yeast species, C. tunisiensis. The in vitro antifungal activities of fluconazole and voriconazole were determined by the agar disk diffusion test and Etest, while the susceptibility to additional antifungal agents was determined with the Sensititre YeastOne system. Our results showed low incidence of azole resistance in C. albicans (0.54%), C. tropicalis (2.08%) and C. glabrata (4.28%). In addition, caspofungin was active against most isolates of the collection with the exception of two K. ohmeri isolates. This is the first report to describe caspofungin resistant isolates of this yeast.
Resumo:
Peripheral blood mononuclear cells from subjects never exposed to Leishmania were stimulated with Leishmania guyanensis. We demonstrated that L. guyanensis-stimulated CD8(+) T cells produced interferon (IFN)- gamma and preferentially expressed the V beta 14 T cell receptor (TCR) gene family. In addition, these cells expressed cutaneous lymphocyte antigen and CCR4 surface molecules, suggesting that they could migrate to the skin. Results obtained from the lesions of patients with localized cutaneous leishmaniaisis (LCL) showed that V beta 14 TCR expression was increased in most lesions (63.5%) and that expression of only a small number of V beta gene families (V beta 1, V beta 6, V beta 9, V beta 14, and V beta 24) was increased. The presence of V beta 14 T cells in tissue confirmed the migration of these cells to the lesion site. Thus, we propose the following sequence of events during infection with L. guyanensis. After initial exposure to L. guyanensis, CD8(+) T cells preferentially expressing the V beta 14 TCR and secreting IFN- gamma develop and circulate in the periphery. During the infection, these cells migrate to the skin at the site of the parasitic infection. The role of these V beta 14 CD8(+) T cells in resistance to infection remains to be determined conclusively.
Resumo:
ABSTRACT: Ultramarathons comprise any sporting event involving running longer than the traditional marathon length of 42.195 km (26.2 miles). Studies on ultramarathon participants can investigate the acute consequences of ultra-endurance exercise on inflammation and cardiovascular or renal consequences, as well as endocrine/energetic aspects, and examine the tissue recovery process over several days of extreme physical load. In a study published in BMC Medicine, Schütz et al. followed 44 ultramarathon runners over 4,487 km from South Italy to North Cape, Norway (the Trans Europe Foot Race 2009) and recorded daily sets of data from magnetic resonance imaging, psychometric, body composition and biological measurements. The findings will allow us to better understand the timecourse of degeneration/regeneration of some lower leg tissues such as knee joint cartilage, to differentiate running-induced from age-induced pathologies (for example, retropatelar arthritis) and finally to assess the interindividual susceptibility to injuries. Moreover, it will also provide new information about the complex interplay between cerebral adaptations/alterations and hormonal influences resulting from endurance exercise and provide data on the dose-response relationship between exercise and brain structure/function. Overall, this study represents a unique attempt to investigate the limits of the adaptive response of human bodies.Please see related article: http://www.biomedcentral.com/1741-7015/10/78.
Resumo:
Antibiotic-resistant pathogens are a major health concern in everyday clinical practice. Because their detection by conventional microbial techniques requires minimally 24 h, some of us have recently introduced a nanomechanical sensor, which can reveal motion at the nanoscale. By monitoring the fluctuations of the sensor, this technique can evidence the presence of bacteria and their susceptibility to antibiotics in less than 1 h. Their amplitude correlates to the metabolism of the bacteria and is a powerful tool to characterize these microorganisms at low densities. This technique is new and calls for an effort to optimize its protocol and determine its limits. Indeed, many questions remain unanswered, such as the detection limits or the correlation between the bacterial distribution on the sensor and the detection's output. In this work, we couple fluorescence microscopy to the nanomotion investigation to determine the optimal experimental protocols and to highlight the effect of the different bacterial distributions on the sensor.
Resumo:
Accumulation of fat in the liver increases the risk to develop fibrosis and cirrhosis and is associated with development of the metabolic syndrome. Here, to identify genes or gene pathways that may underlie the genetic susceptibility to fat accumulation in liver, we studied A/J and C57Bl/6 mice that are resistant and sensitive to diet-induced hepatosteatosis and obesity, respectively. We performed comparative transcriptomic and lipidomic analysis of the livers of both strains of mice fed a high fat diet for 2, 10, and 30 days. We found that resistance to steatosis in A/J mice was associated with the following: (i) a coordinated up-regulation of 10 genes controlling peroxisome biogenesis and β-oxidation; (ii) an increased expression of the elongase Elovl5 and desaturases Fads1 and Fads2. In agreement with these observations, peroxisomal β-oxidation was increased in livers of A/J mice, and lipidomic analysis showed increased concentrations of long chain fatty acid-containing triglycerides, arachidonic acid-containing lysophosphatidylcholine, and 2-arachidonylglycerol, a cannabinoid receptor agonist. We found that the anti-inflammatory CB2 receptor was the main hepatic cannabinoid receptor, which was highly expressed in Kupffer cells. We further found that A/J mice had a lower pro-inflammatory state as determined by lower plasma levels and IL-1β and granulocyte-CSF and reduced hepatic expression of their mRNAs, which were found only in Kupffer cells. This suggests that increased 2-arachidonylglycerol production may limit Kupffer cell activity. Collectively, our data suggest that genetic variations in the expression of peroxisomal β-oxidation genes and of genes controlling the production of an anti-inflammatory lipid may underlie the differential susceptibility to diet-induced hepatic steatosis and pro-inflammatory state.
Resumo:
Summary Resolution of the inflammation is as important as its induction. In this thesis, we investigated the contributions of two prominent factors involved in inflammation, Tumour Necrosis Factor (TNF) and neutrophils. We studied their role in the resolution óf the inflammatory lesion induced by the infection with the protozoan parasite Leishmania major. In mice susceptible to infection with L. major, unhealing lesions are characterized by an elevated number and sustained presence of inflammatory neutrophils in the infected tissue, illustrating an acute inflammatory process. In contrast, mice from resistant strains, which resolve their lesions, can control the presence of neutrophils at the site of infection. Neutrophil persistence in the infected tissue may result from several events including an increased survival of neutrophils mediated by factors produced by the pathogen or the microenvironment. Following infection with L. major, the cellular composition of the inflammatory lesion differs significantly between susceptible and resistant mice and a higher proportion of macrophages is present in the lesions of resistant strains. In an attempt to clarify the factors involved in neutrophil persistence, we investigated the mechanisms modulating neutrophil cell death. We demonstrated that macrophages could induce neutrophil apoptosis in a process involving TNF. TNF is an essential cytokine with pro- and anti-inflammatory properties, which is expressed as a transmembrane protein that can be cleaved releasing the secreted form. Our data show the essential role of the transmembrane form of TNF (mTNF) in the induction of neutrophil apoptosis by macrophages, revealing macrophages and mTNF as important regulators of neutrophil apoptosis. TNF is critical in the resolution of the inflammatory lesion induced by L. major infection, and in L. major resistant strains its absence results in increased swelling of the lesions. We investigated the contribution of mTNF in the outcome of L. major infection. Our data demonstrate that following infection with L. major, mTNF is sufficient to support the resolution of the inflammatory lesion and optimal parasite killing. In addition, we show that the presence of mTNF is essential to induce neutrophil clearance in the infected tissue. While the persistence of neutrophils is deleterious for the host, we could demonstrate an early anti-inflammatory role of neutrophils. Altogether, this study demonstrates the importance of mTNF in the induction of neutrophil apoptosis, a process involved in the resolution of the inflammatory lesion induced by L. major infection. Résumé La résolution de l'inflammation est toute aussi importante que son initiation. Durant ce travail de thèse, nous avons étudié les contributions de deux facteurs importants impliqués dans l'inflammation, le TNF (Facteur Nécrosant des Tumeurs) et les neutrophiles, dans la résolution de la lésion inflammatoire induite par l'infection avec le parasite protozoaire Leishmania major. Chez les souris sensibles à l'infection avec L. major, des lésions importantes qui ne guérissent pas se développent ; celles-ci sont caractérisées par un nombre élevé et une présence soutenue de neutrophiles dans les tissus infectés, ce qui illustre un processus inflammatoire aigu. Au contraire, les souris résistantes à l'infection qui guérissent leurs lésions, sont capables de contrôler la présence des neutrophiles au site d'infection. La persistance des neutrophiles dans la lésion inflammatoire peut être la conséquence de plusieurs événements, dont une augmentation de la survie des neutrophiles induite par des facteurs produits par le pathogène ou le micro-environnement. Suite à l'infection avec L. major, la composition cellulaire de la lésion inflammatoire est significativement différente entre les souris sensibles et résistantes à l'infection, et une plus grande proportion de macrophages est présente dans les lésions des souris résistantes. Dans l'objectif de clarifier les facteurs impliqués dans la persistance des neutrophiles dans les tissus infectés par L. major, nous avons étudié les mécanismes de régulation de la mort des neutrophiles. Nous avons démontré que les macrophages pouvaient induire l'apoptose des neutrophiles dans un procédé impliquant le TNF. Le TNF est une cytokine aux propriétés pro- et anti-inflammatoires, exprimée sous une forme transmembranaire qui peut être clivée pour relâcher la forme sécrétée. Nos expériences illustrent le rôle essentiel de la forme transmembranaire du TNF (mTNF) dans l'induction de l'apoptose des neutrophiles par les macrophages. Lé TNF est une cytokine importante dans la résolution de la réaction inflammatoire induite par L. major, et chez les souris résistantes l'absence de TNF provoque des lésions inflammatoires plus importantes. Nous avons étudié la contribution du mTNF dans la résolution de l'infection avec L. major. Nos résultats démontrent que suite à une infection avec le parasite, la présence du mTNF est suffisante pour guérir la lésion inflammatoire et contrôler efficacement la réplication du parasite. De plus, le mTNF joue un rôle essentiel dans l'élimination des neutrophiles du tissu infecté. Alors que la persistance des neutrophiles est nocive pour l'hôte, nous avons montré que les neutrophiles avaient un rôle précoce anti-inflammatoire. En résumé, cette étude révèle l'importance du mTNF dans l'induction de l'apoptose des neutrophiles par les macrophages, un procédé impliqué dans la résolution de la lésion inflammatoire induite par l'infection avec L. major.
Resumo:
Background: Germline genetic variation is associated with the differential expression of many human genes. The phenotypic effects of this type of variation may be important when considering susceptibility to common genetic diseases. Three regions at 8q24 have recently been identified to independently confer risk of prostate cancer. Variation at 8q24 has also recently been associated with risk of breast and colorectal cancer. However, none of the risk variants map at or relatively close to known genes, with c-MYC mapping a few hundred kilobases distally. Results: This study identifies cis-regulators of germline c-MYC expression in immortalized lymphocytes of HapMap individuals. Quantitative analysis of c-MYC expression in normal prostate tissues suggests an association between overexpression and variants in Region 1 of prostate cancer risk. Somatic c-MYC overexpression correlates with prostate cancer progression and more aggressive tumor forms, which was also a pathological variable associated with Region 1. Expression profiling analysis and modeling of transcriptional regulatory networks predicts a functional association between MYC and the prostate tumor suppressor KLF6. Analysis of MYC/Myc-driven cell transformation and tumorigenesis substantiates a model in which MYC overexpression promotes transformation by down-regulating KLF6. In this model, a feedback loop through E-cadherin down-regulation causes further transactivation of c-MYC.Conclusion: This study proposes that variation at putative 8q24 cis-regulator(s) of transcription can significantly alter germline c-MYC expression levels and, thus, contribute to prostate cancer susceptibility by down-regulating the prostate tumor suppressor KLF6 gene.
Resumo:
OBJECTIVES: The aim of this study was to evaluate the risk factors associated with Contegra graft (Medtronic Minneapolis, MN, USA) infection after reconstruction of the right ventricular outflow tract. METHODS: One hundred and six Contegra grafts were implanted between April 1999 and April 2010 for the Ross procedure (n = 46), isolated pulmonary valve replacement (n = 32), tetralogy of Fallot (n = 24), double-outlet right ventricle (n = 7), troncus arteriosus (n = 4), switch operation (n = 1) and redo of pulmonary valve replacement (n = 2). The median age of the patients was 13 years (range 0-54 years). A follow-up was completed in all cases with a median duration of 7.6 years (range 1.7-12.7 years). RESULTS: There were 3 cases of in-hospital mortality. The survival rate during 7 years was 95.7%. Despite the lifelong endocarditis prophylaxis, Contegra graft infection was diagnosed in 12 (11.3%) patients at a median time of 4.4 years (ranging from 0.4 to 8.7 years). Univariate analysis of preoperative, perioperative and postoperative variables was performed and the following risk factors for time to infection were identified: female gender with a hazard ratio (HR) of 0.19 (P = 0.042), systemic-to-pulmonary shunt (HR 6.46, P < 0.01), hypothermia (HR 0.79, P = 0.014), postoperative renal insufficiency (HR 11.97, P = 0.015) and implantation of permanent pacemaker during hospitalization (HR 5.29, P = 0.075). In 2 cases, conservative therapy was successful and, in 10 patients, replacement of the infected valve was performed. The Contegra graft was replaced by a homograft in 2 cases and by a new Contegra graft in 8 cases. Cox's proportional hazard model indicated that time to graft infection was significantly associated with tetralogy of Fallot (HR 0.06, P = 0.01), systemic-to-pulmonary shunt (HR 64.71, P < 0.01) and hypothermia (HR 0.77, P < 0.01). CONCLUSION: Contegra graft infection affected 11.3% of cases in our cohort, and thus may be considered as a frequent entity that can be predicted by both intraoperative and early postoperative factors. After the diagnosis of infection associated with the Contegra graft was confirmed, surgical treatment was the therapy of choice.
Resumo:
Hatching is an important niche shift, and embryos in a wide range of taxa can either accelerate or delay this life-history switch in order to avoid stage-specific risks. Such behavior can occur in response to stress itself and to chemical cues that allow anticipation of stress. We studied the genetic organization of this phenotypic plasticity and tested whether there are differences among populations and across environments in order to learn more about the evolutionary potential of stress-induced hatching. As a study species, we chose the brown trout (Salmo trutta; Salmonidae). Gametes were collected from five natural populations (within one river network) and used for full-factorial in vitro fertilizations. The resulting embryos were either directly infected with Pseudomonas fluorescens or were exposed to waterborne cues from P. fluorescens-infected conspecifics. We found that direct inoculation with P. fluorescens increased embryonic mortality and induced hatching in all host populations. Exposure to waterborne cues revealed population-specific responses. We found significant additive genetic variation for hatching time, and genetic variation in trait plasticity. In conclusion, hatching is induced in response to infection and can be affected by waterborne cues of infection, but populations and families differ in their reaction to the latter.
Resumo:
OBJECTIVES: The purpose of this study was the qualitative and quantitative assessment of the in vitro effect of HIV-1 protease (PR) mutation 82M on replication capacity and susceptibility to the eight clinically available PR inhibitors (PIs).¦METHODS: The 82M substitution was introduced by site-directed mutagenesis in wild-type subtype B and G strains, as well as reverted back to wild-type in a therapy-failing strain. The recombinant viruses were evaluated for their replication capacity and susceptibility to PIs.¦RESULTS: The single 82M mutation within a wild-type subtype B or G background did not result in drug resistance. However, the in vitro effect of single PR mutations on PI susceptibility is not always distinguishable from wild-type virus, and particular background mutations and polymorphisms are required to detect significant differences in the drug susceptibility profile. Consequently, reverting the 82M mutation back to wild-type (82I) in a subtype G isolate from a patient that failed therapy with multiple other PR mutations did result in significant increases in susceptibility towards indinavir and lopinavir and minor increases in susceptibility towards amprenavir and atazanavir. The presence of the 82M mutation also slightly decreased viral replication, whether it was in the genetic background of subtype B or subtype G.¦CONCLUSIONS: Our results suggest that 82M has an impact on PI susceptibility and that this effect is not due to a compensatory effect on the replication capacity. Because 82M is not observed as a polymorphism in any subtype, these observations support the inclusion of 82M in drug resistance interpretation systems and PI mutation lists.
Resumo:
Severe sepsis and septic shock are lethal complications of infection, characterised by dysregulated inflammatory and immune responses. Our understanding of the pathogenesis of sepsis has improved markedly in recent years, but unfortunately has not been translated into efficient treatment strategies. Epigenetic mechanisms such as covalent modification of histones by acetylation are master regulators of gene expression under physiological and pathological conditions, and strongly impact on inflammatory and host defence responses. Histone acetylation is controlled by histone acetyltransferases and histone deacetylases (HDACs), which affect gene expression also by targeting non-histone transcriptional regulators. Numerous HDAC inhibitors (HDACi) are being tested in clinical trials, primarily for the treatment of cancer. We performed the first comprehensive study of the impact of HDACi on innate immune responses in vitro and in vivo. We showed that HDACi act essentially as negative regulators of the expression of critical immune receptors and antimicrobial pathways in innate immune cells. In agreement, HDACi impaired phagocytosis and killing of bacteria by macrophages, and increased susceptibility to non-severe bacterial and fungal infections. Strikingly, proof-of-principle studies demonstrated that HDACi protect from lethal toxic shock and septic shock. Overall, our observations argue for a close monitoring of the immunological and infection status of patients treated with HDACi, especially immunocompromised cancer patients. They also support the concept of pharmacological inhibitors of HDACs as promising drugs to treat inflammatory diseases, including sepsis.
Resumo:
This analysis is a follow-up to an earlier investigation of 182 genes selected as likely candidate genetic variations conferring susceptibility to anorexia nervosa (AN). As those initial case-control results revealed no statistically significant differences in single nucleotide polymorphisms, herein, we investigate alternative phenotypes associated with AN. In 1762 females, using regression analyses, we examined the following: (i) lowest illness-related attained body mass index; (ii) age at menarche; (iii) drive for thinness; (iv) body dissatisfaction; (v) trait anxiety; (vi) concern over mistakes; and (vii) the anticipatory worry and pessimism versus uninhibited optimism subscale of the harm avoidance scale. After controlling for multiple comparisons, no statistically significant results emerged. Although results must be viewed in the context of limitations of statistical power, the approach illustrates a means of potentially identifying genetic variants conferring susceptibility to AN because less complex phenotypes associated with AN are more proximal to the genotype and may be influenced by fewer genes. Copyright © 2011 John Wiley & Sons, Ltd and Eating Disorders Association.
Resumo:
The identification of novel transcription factors associated with antifungal response may allow the discovery of fungus-specific targets for new therapeutic strategies. A collection of 241 Candida albicans transcriptional regulator mutants was screened for altered susceptibility to fluconazole, caspofungin, amphotericin B, and 5-fluorocytosine. Thirteen of these mutants not yet identified in terms of their role in antifungal response were further investigated, and the function of one of them, a mutant of orf19.6102 (RCA1), was characterized by transcriptome analysis. Strand-specific RNA sequencing and phenotypic tests assigned Rca1 as the regulator of hyphal formation through the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway and the transcription factor Efg1, but also probably through its interaction with a transcriptional repressor, most likely Tup1. The mechanisms responsible for the high level of resistance to caspofungin and fluconazole observed resulting from RCA1 deletion were investigated. From our observations, we propose that caspofungin resistance was the consequence of the deregulation of cell wall gene expression and that fluconazole resistance was linked to the modulation of the cAMP/PKA signaling pathway activity. In conclusion, our large-scale screening of a C. albicans transcription factor mutant collection allowed the identification of new effectors of the response to antifungals. The functional characterization of Rca1 assigned this transcription factor and its downstream targets as promising candidates for the development of new therapeutic strategies, as Rca1 influences host sensing, hyphal development, and antifungal response.