841 resultados para structures familiales


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addition of 1,4-dithiols to dichloromethane solutions of [PtCl2(P-P)] (P-P = (PPh3)2, Ph2P(CH2)3PPh2, Phd2P(CH2)4PPh2; 1,4-dithiols = HS(CH2)4SH, (−)DIOSH2 (2,3-O-isopropylidene-1,4-dithiol-l-threitol), BINASH2 (1,1′-dinaphthalene-2,2′-dithiol)) in the presence of NEt3 yielded the mononuclear complexes [Pt(1,4-dithiolato)(P-P)]. Related palladium(II) complexes [Pd(dithiolato)(P-P)] (P-P=Ph2P(CH2)3PPh2, Ph2P(CH2)4PPh2; dithiolato = −S(CH2)4S−, (−)-DIOS) were prepared by the same method. The structure of [Pt((−)DIOS)(PPh3)2] and [Pd(S(CH2)4S)(Ph2P(CH2)3PPh2)] complexes was determined by X-ray diffraction methods. Pt—dithiolato—SnC12 systems are active in the hydroformylation of styrene. At 100 atm and 125°C [Pt(dithiolate)(P-P)]/SnCl2 (Pt:Sn = 20) systems provided aldehyde conversion up to 80%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of with one or two equivalents of LiPPh2 afforded the new phosphanidometal(III) complexes . Reaction of 2 with LiC≡CSiMe3 led to the diamagnetic zirconium(III) alkynyl derivative [{Zr(C5H5)(μ−C≡CSiMe3)}2(μ−η5−C5H4−η5−C5H4], 7. Alkylation of 6 with LiCH2CMe2Ph gave [{Zr(η5−C5H5)(CH2CMe2Ph)2}2{μ−(η5−C5H4)}], 8. A detailed NMR study of complexes 3 and 4 allowed the observation of the spectral behaviour of the eight different fulvalene protons through their coupling to the 31P nucleus. The fluxional behaviour of complex 7 was studied by dynamic DNMR, and kinetic parameters for the σ-π-conversion of the alkynyl ligand were determined. The molecular structures of complexes 3 and 7 were determined by X-ray diffraction methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterobimetallic complexes [(P−P)Pt(μ-S−S)Rh(cod)]ClO4 (P−P = (PPh3)2, Ph2P(CH2)3PPh2 (dppp), and Ph2P(CH2)4PPh2 (dppb); S−S = -S(CH2)2S- (EDT), -S(CH2)3S- (PDT), -S(CH2)4S- (BDT), cod = 1,5-cyclooctadiene) reacted with CO to form the carbonyl complexes [(P−P)Pt(μ-S−S)Rh(CO)2]ClO4 and then with PR3 ligands to give [(P−P)Pt(μ-S−S)Rh(CO)(PR3)]ClO4. The binuclear framework of these cod complexes was maintained in the reactions reported. The cod complexes were tested as catalyst precursors in the hydroformylation of styrene. HPNMR in situ studies showed that mononuclear species formed under catalytic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenylphosphinic acid (HPhPO2H) and phenylphosphonic acid (PhPO3H2) react with a methanolic solution of [Ru2(μ-O2CCH3)4(O2CCH3)2]H·0.7H2O at room temperature to give [Ru2(μ-O2CCH3)4(HPhPO2)2H (1) and [Ru2(μ-O2CCH3)4 (PhPO3H)2]H·H2O (2), respectively. The X-ray crystal structures of 1 and 2 each show the RuRu core to be ligated by four bridging bidentate acetate ligands [RuRu distances: 1 = 2.272(1) Å; 2 = 2.267(2) Å] and two axial phenylphosphinate and phenylphosphonate ligands, respectively. In each complex the individual bimetallic molecules are linked together by a hydrogen ion which bridges the oxygen atoms of neighbouring axial ligands. In 2 the water molecule is also hydrogen-bonded to one of the axial phenylphosphonate groups. Spectroscopic, magnetic and cyclic voltammetric data for the complexes are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenylphosphinic acid (HPhPO2H) is oxidized to phenylphosphonic acid (PhPO3H2) at room temperature using a solution of [Cu2(μ-O2CCH3)4(H2O)2] in pyridine. The phenylphosphonic acid was recovered as the monomeric copper(II) complex [Cu(PhPO3H)2(C5H5N)4]·H2O (1a), and the reaction thought to proceed via a copper(I) intermediate. Recrystallization of 1a from methanol gave [Cu(PhPO3H)2(C5H5N)4]·2CH3OH (1b). The unsolvated complex [Cu(PhPO3H)2(C5H5N)4] (1c) was prepared by refluxing polymeric [Cu(PhPO3)(H2O)] (2) in pyridine. The X-ray crystal structures of 1b and 1c show that in each of these monomeric complexes the copper(II) ion is ligated by four equatorial pyridine molecules and two axial monoanionic phenylphosphonate groups. A cyclic voltammetric study of 1a revealed a quasi-reversible Cu2+/Cu+ couple with E1/2 = +228 mV (vs Ag/AgCl).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1,1′-Diacetylferrocene reacts with neat hydrate over a period of 72 h at 20°C to give the dihydrazone [H2NN(Me)CC5H4FeC5H4C(Me)NNH2] (6) in almost quantitative yield. Either prolonging the reaction time or reacting 6 with fresh hydrazine causes the iron to be stripped from the metallocene and bis(hydrazine)bis(hydrazinecarboxylato-N′,O) iron(II), [Fe(N2H4)2(OOCNHNH2)2] (11), crystallizes. In the presence of Ba2+ or Mo2+ ions two molecules of complex 6 react to give the cyclic diazine [N(Me)CC5H4FeC5H4C (Me)N]2 (7) in high yield. Hydrazine is liberated in this reaction. Complexes 6 and 11 have been characterized crystallographically. The cyclic voltammograms of complexes 6 and 7 contain essentially non-reversible oxidation peaks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stannylene [SnR2] (R = CH(SiMe3)2) reacts in different ways with the three dodecacarbonyls of the iron triad: [Fe3(CO)12] gives [Fe2(CO)8(μ-SnR2)], [Ru3(CO)12] gives the planar pentametallic cluster [Ru3(CO)10(μ-SnR2)2], for which a full structural analysis is reported, while [Os3(CO)12] fails to react. Different products are also obtained from three nitrile derivatives: [Fe3-(CO)11(MeCN)] gives [Fe2(CO)6(μ-SnR2)2], which has a structure significantly different from that of known Fe2Sn2 clusters, [Ru3(CO)10(MeCN)2] gives the pentametallic cluster described above, while [Os3(CO)10(MeCN)2] gives the isostructural osmium analogue, which shows the unusual feature of a CO group bridging two osmium atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mild heating of the phosphidotriosmium cluster [Os3H(CO)10(µ2-PH2)](1) with [Os3(CO)12 –n(MeCN)n](n= 1 or 2) gives high yields of the (µ3-PH) bridged hexaosmium clusters (2) and (3); reactions of (2) and (3) with bases and X-ray structure analyses of (3) and of (6), which was obtained from (3) and MeO– followed by acid treatment are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of Li(CPhCMe2) with SnCl4 or CrCl3·3thf (thf = tetrahydrofuran) affords the isoleptic compounds Sn(CPhCMe2)4 or [Cr(CPhCMe2)4] respectively. The mode of formation and chemical properties are reported for the chromium species, and the structures of the new compounds, both of which have been determined by single-crystal X-ray analysis, are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two novel, monomeric heteroleptic tin(II) derivatives, [Sn{2-[(Me3Si)2C]C5H4N}R] [R = C6H2Pri3-2,4,6 1 or CH(PPh2)2 2], have been prepared, characterised by multinuclear NMR spectroscopies and their molecular structures determined by single crystal X-ray diffraction. Both compounds were prepared from the corresponding heteroleptic tin(II) chloro-analogue, [Sn{2-[(Me3Si)2C]C5H4N}Cl], and thus demonstrate the utility of this compound as a precursor to further examples of heteroleptic tin(II) derivatives: such compounds are often unstable with respect to ligand redistribution. In each case, the central tin(II) is three-co-ordinate. Crystals of trimeric [{Sn(C6H2Pri3-2,4,6)2}3] 3 were found to undergo a solid state phase transition, which may be ascribed to ordering of the ligand isopropyl groups. At 220 K the unit cell is orthorhombic, space group Pna21, compared with monoclinic, space group P21/c, for the same crystals at 298 K, in which there is an effective tripling of the now b (originally c) axis. This result illustrates the extreme crowding generated by this bulky aryl ligand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compounds trans-[PtBr{C(C10H15)CH2}(PEt3)2](1)(C10H15= adamant-1-yl), trans-[MBr{C(C10H7)CMe2}(PEt3)2][M = Pd (2) or Pt (3); C10H7= naphth-1-yl], and trans-[MBr{C(Ph)CMe2}(PEt3)2][M = Pd (4) or Pt (5)] have been prepared from Grignard [for (2) and (3)] or lithium reagents [for (1), (4), and (5)] and appropriate dichlorobis(phosphine)metal derivatives. Full single-crystal X-ray data are reported for (1) and (3), and reveal unusually long Pt–C(sp2) bonds. Insertion reactions into these M–C bonds occur with MeNC [for (1), (3), and (5)], and with CO [for (1) and (3)]; the latter, the first reported insertion into a Pt–C(sp2) bond, occurs under mild conditions as expected for the abnormally long M–C bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of the labile cluster [Os3(CO)11(MeCN)] with PH3 affords the substituted product [Os3(CO)11(PH3)](1) in high yield. Subsequent reaction of (1) with Na2CO3 in MeOH, followed by acidification, gives the hydrido phosphido cluster [Os3(µ-H)(CO)10(µ-PH2)](2). When (2) is heated to 45–60 °C in the presence of [Os3(CO)11(MeCN)] a hexanuclear complex with the formulation [Os6(µ-H)2(CO)21(µ3-PH)](3) is obtained. If this reaction is repeated using [Os3(CO)10(MeCN)2] instead of [Os3(CO)11(MeCN)], an acetonitrile-containing product, [Os6(µ-H)2(CO)20(MeCN)(µ3-PH)](4), is obtained. An X-ray analysis of (4) shows that two Os3 triangular units are linked by a µ3-phosphinidene ligand, which symmetrically bridges an Os–Os edge of one triangle and is terminally co-ordinated to one Os atom of the second triangle. When (3) is treated with a weak base, such as [N(PPh3)2]Cl or [PPh3Me] Br, deprotonation to the corresponding cluster monoanion [Os6(µ-H)(CO)21(µ3-PH)]–(5) occurs. Treatment of (5) with a weak acid regenerates (3) in quantitative yield. Thermolysis of (3) leads to a closing up of the metal framework, affording the cluster [Os6(µ-H)(CO)18(µ6-P)], which readily deprotonates to give the anion [Os6(CO)18(µ6-P)]–(7) in the presence of [N(PPh3)2] Cl or [PPh3Me]Br. The same anion (7) may also be obtained by direct thermolysis of (5). An X-ray analysis of the [PPh3Me]+ salt of (7) confirms that the phosphorus occupies an interstitial site in a trigonal-prismatic hexaosmium framework, and co-ordinates to all six metal atoms with an average Os–P distance of 2.31 (1)Å. Proton and 31P n.m.r. data on all the new clusters are presented, and the position of the phosphorus resonance in the 31P n.m.r. spectrum is related to the changes in the environment of the phosphorus atom.