957 resultados para spin probe


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of the differential cross section and the transverse single-spin asymmetry, A(N), vs x(F) for pi(0) and eta mesons are reported for 0.4 < x(F) < 0.75 at an average pseudorapidity of 3.68. A data sample of approximately 6.3 pb(-1) was analyzed, which was recorded during p(up arrow) + p collisions at root s = 200 GeV by the STAR experiment at RHIC. The average transverse beam polarization was 56%. The cross section for pi(0), including the previously unmeasured region of x(F) > 0.55, is consistent with a perturbative QCD prediction, and the eta/pi(0) cross-section ratio agrees with existing midrapidity measurements. For 0.55 < x(F) < 0.75, the average A(N) for eta is 0.210 +/- 0.056, and that for pi(0) is 0.081 +/- 0.016. The probability that these two asymmetries are equal is similar to 3%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among all magnetic semiconductors, GaMnAs seems to be the most important one. In this work, we present accurate first-principles calculations of GaMnAs within the GGA-1/2 approach: We concentrate our efforts in obtaining the position of the peak of Mn-d levels in the valence band and also the majority spin band gap. For the position of the Mn-d peak, we find a value of 3.3 eV below the Fermi level, in good agreement with the most recent experimental results of 3.5 and 3.7 eV. An analytical expression that fits the calculated E-g(x) for majority spin is derived in order to provide ready access to the band gap for the composition range from 0 to 0.25. We found a value of 3.9 eV for the gap bowing parameter. The results agree well with the most recent experimental data. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4718602]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is clear that sudden unexpected death in epilepsy (SUDEP) is mainly a problem for people with refractory epilepsy, but our understanding of the best way to its prevention is still incomplete. Although the pharmacological treatments available for epilepsies have expanded, some antiepileptic drugs are still limited in clinical efficacy. In the present paper, we described an experience with vagus nerve stimulation (VNS) treatment by opening space and providing the opportunity to implement effective preventative maps to reduce the incidence of SUDEP in children and adolescents with refractory epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most studies on measures of transpiration of plants, especially woody fruit, relies on methods of heat supply in the trunk. This study aimed to calibrate the Thermal Dissipation Probe Method (TDP) to estimate the transpiration, study the effects of natural thermal gradients and determine the relation between outside diameter and area of xylem in 'Valencia' orange young plants. TDP were installed in 40 orange plants of 15 months old, planted in boxes of 500 L, in a greenhouse. It was tested the correction of the natural thermal differences (DTN) for the estimation based on two unheated probes. The area of the conductive section was related to the outside diameter of the stem by means of polynomial regression. The equation for estimation of sap flow was calibrated having as standard lysimeter measures of a representative plant. The angular coefficient of the equation for estimating sap flow was adjusted by minimizing the absolute deviation between the sap flow and daily transpiration measured by lysimeter. Based on these results, it was concluded that the method of TDP, adjusting the original calibration and correction of the DTN, was effective in transpiration assessment.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene has received great attention due to its exceptional properties, which include corners with zero effective mass, extremely large mobilities, this could render it the new template for the next generation of electronic devices. Furthermore it has weak spin orbit interaction because of the low atomic number of carbon atom in turn results in long spin coherence lengths. Therefore, graphene is also a promising material for future applications in spintronic devices - the use of electronic spin degrees of freedom instead of the electron charge. Graphene can be engineered to form a number of different structures. In particular, by appropriately cutting it one can obtain 1-D system -with only a few nanometers in width - known as graphene nanoribbon, which strongly owe their properties to the width of the ribbons and to the atomic structure along the edges. Those GNR-based systems have been shown to have great potential applications specially as connectors for integrated circuits. Impurities and defects might play an important role to the coherence of these systems. In particular, the presence of transition metal atoms can lead to significant spin-flip processes of conduction electrons. Understanding this effect is of utmost importance for spintronics applied design. In this work, we focus on electronic transport properties of armchair graphene nanoribbons with adsorbed transition metal atoms as impurities and taking into account the spin-orbit effect. Our calculations were performed using a combination of density functional theory and non-equilibrium Greens functions. Also, employing a recursive method we consider a large number of impurities randomly distributed along the nanoribbon in order to infer, for different concentrations of defects, the spin-coherence length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain fatty acid-binding protein (B-FABP) interacts with biological membranes and delivers polyunsaturated fatty acids (FAs) via a collisional mechanism. The binding of FAs in the protein and the interaction with membranes involve a motif called "portal region", formed by two small α-helices, A1 and A2, connected by a loop. We used a combination of site-directed mutagenesis and electron spin resonance to probe the changes in the protein and in the membrane model induced by their interaction. Spin labeled B-FABP mutants and lipidic spin probes incorporated into a membrane model confirmed that BFABP interacts with micelles through the portal region and led to structural changes in the protein as well in the micelles. These changes were greater in the presence of LPG when compared to the LPC models. ESR spectra of B-FABP labeled mutants showed the presence of two groups of residues that responded to the presence of micelles in opposite ways. In the presence of lysophospholipids, group I of residues, whose side chains point outwards from the contact region between the helices, had their mobility decreased in an environment of lower polarity when compared to the same residues in solution. The second group, composed by residues with side chains situated at the interface between the α-helices, experienced an increase in mobility in the presence of the model membranes. These modifications in the ESR spectra of B-FABP mutants are compatible with a less ordered structure of the portal region inner residues (group II) that is likely to facilitate the delivery of FAs to target membranes. On the other hand, residues in group I and micelle components have their mobilities decreased probably as a result of the formation of a collisional complex. Our results bring new insights for the understanding of the gating and delivery mechanisms of FABPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Working with nuclear magnetic resonance (NMR) in quadrupolar spin systems, in this paper we transfer the concept of atomic coherent state to the nuclear spin context, where it is referred to as pseudonuclear spin coherent state (pseudo-NSCS). Experimentally, we discuss the initialization of the pseudo- NSCSs and also their quantum control, implemented by polar and azimuthal rotations. Theoretically, we compute the geometric phases acquired by an initial pseudo-NSCS on undergoing three distinct cyclic evolutions: (i) the free evolution of the NMR quadrupolar system and, by analogy with the evolution of the NMR quadrupolar system, that of (ii) single-mode and (iii) two-mode Bose-Einstein Condensate like system. By means of these analogies, we derive, through spin angular momentum operators, results equivalent to those presented in the literature for orbital angular momentum operators. The pseudo-NSCS description is a starting point to introduce the spin squeezed state and quantum metrology into nuclear spin systems of liquid crystal or solid matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]El Crowdfunding, o micromecenazgo, es una realidad que sólo en España recaudó en 2014 más de 62 millones de euros, un 14% más que en 2013. El Crowdfunding no sólo sirve para financiar la creación de productos, libros o discos, sino también puede usarse para financiar investigaciones científicas y hasta ya existen plataformas especializadas como la española Precipita, creada por la FECYT. En esta charla veremos las principales características y tipos de crowdfunding, además de los principales ingredientes a tener en cuenta para el diseño y publicación de una campaña

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main object of this thesis is the analysis and the quantization of spinning particle models which employ extended ”one dimensional supergravity” on the worldline, and their relation to the theory of higher spin fields (HS). In the first part of this work we have described the classical theory of massless spinning particles with an SO(N) extended supergravity multiplet on the worldline, in flat and more generally in maximally symmetric backgrounds. These (non)linear sigma models describe, upon quantization, the dynamics of particles with spin N/2. Then we have analyzed carefully the quantization of spinning particles with SO(N) extended supergravity on the worldline, for every N and in every dimension D. The physical sector of the Hilbert space reveals an interesting geometrical structure: the generalized higher spin curvature (HSC). We have shown, in particular, that these models of spinning particles describe a subclass of HS fields whose equations of motions are conformally invariant at the free level; in D = 4 this subclass describes all massless representations of the Poincar´e group. In the third part of this work we have considered the one-loop quantization of SO(N) spinning particle models by studying the corresponding partition function on the circle. After the gauge fixing of the supergravity multiplet, the partition function reduces to an integral over the corresponding moduli space which have been computed by using orthogonal polynomial techniques. Finally we have extend our canonical analysis, described previously for flat space, to maximally symmetric target spaces (i.e. (A)dS background). The quantization of these models produce (A)dS HSC as the physical states of the Hilbert space; we have used an iterative procedure and Pochhammer functions to solve the differential Bianchi identity in maximally symmetric spaces. Motivated by the correspondence between SO(N) spinning particle models and HS gauge theory, and by the notorious difficulty one finds in constructing an interacting theory for fields with spin greater than two, we have used these one dimensional supergravity models to study and extract informations on HS. In the last part of this work we have constructed spinning particle models with sp(2) R symmetry, coupled to Hyper K¨ahler and Quaternionic-K¨ahler (QK) backgrounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programa de doctorado: Nuevas tendencias estratégicas en administración y dirección de empresas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oktaedrisch koordinierte Übergangsmetalle mit der Elektronenkonfiguration [Ar]3d4 - 3d7 können in zwei unterschiedlichen elektronischen Zuständen existieren: im High-Spin (HS) oder im Low-Spin (LS) Zustand. Zum Beispiel kann Fe(II) in 1A1g (LS) oder 5T2g (HS) Konfiguration auftreten.Besonderes Interesse besteht in der Aufklärung des Mechanismus der kooperativen Wechselwirkung, die den Spinübergang im Festkörper bestimmt. Hierzu müssen zunächst die internen Freiheitsgrade der molekularen Einheiten bekannt sein. Besonders der Beitrag der molekularen Schwingungen zur Entropiedifferenz, die die Triebkraft des Spinübergangs darstellt, ist von entscheidender Bedeutung. Bisher existieren nur wenige detaillierte Untersuchungen zu den Schwingungseigenschaften der Spincrossovermoleküle.In Rahmen der vorliegenden Arbeit wurden die Schwingungseigenschaften einiger Komplexverbindungen, die Spincrossover zeigen, im Detail untersucht. Dazu wurden temperaturabhängige Raman-, Fern- und Mittel-Infrarot-Spektroskopie, Isotopensubstitution und Normalkoordinatenanalysen (NKA) in Verbindung mit Dichtefunktional-Rechnungen (DFT) verwendet.Die gewonnenen Werte der zugeordneten Schwingungsfrequenzen und die bestimmten Kraftkonstantenänderungen können nun zur Verfeinerung von theoretischen Modellen zur Beschreibung des Spinübergangs verwendet werden.