983 resultados para spatial practices


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study assesses gender differences in spatial and non-spatial relational learning and memory in adult humans behaving freely in a real-world, open-field environment. In Experiment 1, we tested the use of proximal landmarks as conditional cues allowing subjects to predict the location of rewards hidden in one of two sets of three distinct locations. Subjects were tested in two different conditions: (1) when local visual cues marked the potentially-rewarded locations, and (2) when no local visual cues marked the potentially-rewarded locations. We found that only 17 of 20 adults (8 males, 9 females) used the proximal landmarks to predict the locations of the rewards. Although females exhibited higher exploratory behavior at the beginning of testing, males and females discriminated the potentially-rewarded locations similarly when local visual cues were present. Interestingly, when the spatial and local information conflicted in predicting the reward locations, males considered both spatial and local information, whereas females ignored the spatial information. However, in the absence of local visual cues females discriminated the potentially-rewarded locations as well as males. In Experiment 2, subjects (9 males, 9 females) were tested with three asymmetrically-arranged rewarded locations, which were marked by local cues on alternate trials. Again, females discriminated the rewarded locations as well as males in the presence or absence of local cues. In sum, although particular aspects of task performance might differ between genders, we found no evidence that women have poorer allocentric spatial relational learning and memory abilities than men in a real-world, open-field environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article aims to determine the impact of human resource management (HRM) practices on public service motivation (PSM) and organizational performance. Based on a survey of Swiss cantonal public employees (N = 3,131), this study shows that several HRM practices may be considered as organizational antecedents of PSM and strong predictors of perceived organizational performance. Fairness, job enrichment, individual appraisal, and professional development are HRM practices that are positively and significantly associated with PSM and perceived organizational performance. Moreover, these results suggest that HRM practices are stronger predictors than either PSM or organizational commitment when explaining the individual perception of organizational performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a novel method for monitoring network optimisation, based on a recent machine learning technique known as support vector machine. It is problem-oriented in the sense that it directly answers the question of whether the advised spatial location is important for the classification model. The method can be used to increase the accuracy of classification models by taking a small number of additional measurements. Traditionally, network optimisation is performed by means of the analysis of the kriging variances. The comparison of the method with the traditional approach is presented on a real case study with climate data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital library developments are part of a global move in many sectors of society toward virtual work and electronic services made possible by the advances in information technology. This environment requires new attitudes and skills in the workforce and therefore leaders who understand the global changes underlying the new information economy and how to lead and develop such a workforce. This article explores ways to develop human resources and stimulate creativity to capitalize on the immense potential of digital libraries to educate and empower social change. There is a shortage of technically skilled workers and even more so of innovators. Retention and recruitment is one of the greatest obstacles to developing digital library services and information products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Describimos la distribución espacial de individuos de Pinus uncinata clasificados según su forma de crecimiento y tamaño en dos ecotonos poco perturbados del límite altitudinal del árbol situados en los Pirineos Centrales españoles (Ordesa, O; Tessó, T). En cada sitio situamos una parcela rectangular (30 140 m), que incluía los límites del árbol y del bosque, y cuyo lado mayor seguía el gradiente altitudinal. En ambos sitios, los individuos vivos eran más grandes y tenían un mayor número de cohortes de acículas pendiente abajo. La distribución de las clases de individuos según su forma de crecimiento y tamaño en el sitio O seguía una secuencia de mayor tamaño pendiente abajo, desde abundantes individuos policórmicos arbustivos (krummholz) con pocas cohortes de acículas (1-3) hasta individuos arbóreos mayores unicórmicos con varias cohortes de acículas (4-12). Por el contrario, los cambios estructurales en el ecotono del sitio T fueron graduales y no siguieron de forma tan clara dicha secuencia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radioactive soil-contamination mapping and risk assessment is a vital issue for decision makers. Traditional approaches for mapping the spatial concentration of radionuclides employ various regression-based models, which usually provide a single-value prediction realization accompanied (in some cases) by estimation error. Such approaches do not provide the capability for rigorous uncertainty quantification or probabilistic mapping. Machine learning is a recent and fast-developing approach based on learning patterns and information from data. Artificial neural networks for prediction mapping have been especially powerful in combination with spatial statistics. A data-driven approach provides the opportunity to integrate additional relevant information about spatial phenomena into a prediction model for more accurate spatial estimates and associated uncertainty. Machine-learning algorithms can also be used for a wider spectrum of problems than before: classification, probability density estimation, and so forth. Stochastic simulations are used to model spatial variability and uncertainty. Unlike regression models, they provide multiple realizations of a particular spatial pattern that allow uncertainty and risk quantification. This paper reviews the most recent methods of spatial data analysis, prediction, and risk mapping, based on machine learning and stochastic simulations in comparison with more traditional regression models. The radioactive fallout from the Chernobyl Nuclear Power Plant accident is used to illustrate the application of the models for prediction and classification problems. This fallout is a unique case study that provides the challenging task of analyzing huge amounts of data ('hard' direct measurements, as well as supplementary information and expert estimates) and solving particular decision-oriented problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to characterise the current autotrophic compartment of the Albufera des Grau coastal lagoon (Menorca, Balearic Islands) and to assess the relationship between the submerged macrophytes and the limnological parameters of the lagoon. During the study period the submerged vegetation was dominated by the macrophyte Ruppia cirrhosa, which formed dense extensive meadows covering 79% of the surface. Another macrophyte species, Potamogeton pectinatus, was also observed but only forming small stands near the rushing streams. Macroalgae were only occasionally observed. Macrophyte biomass showed a clear seasonal trend, with maximum values in July. The biomass of R. cirrhosa achieved 1760 g DW m-2, the highest biomass ever reported for this species in the literature. The seasonal production-decomposition cycle of the macrophyte meadows appears to drive the nutrient dynamics and carbon fluxes in the lagoon. Despite the significant biomass accumulation and the absence of a washout of nutrients and organic matter to the sea, the lagoon did not experience a dystrophic collapse. These results indicate that internal metabolism is more important than exchange processes in the lagoon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present research deals with an important public health threat, which is the pollution created by radon gas accumulation inside dwellings. The spatial modeling of indoor radon in Switzerland is particularly complex and challenging because of many influencing factors that should be taken into account. Indoor radon data analysis must be addressed from both a statistical and a spatial point of view. As a multivariate process, it was important at first to define the influence of each factor. In particular, it was important to define the influence of geology as being closely associated to indoor radon. This association was indeed observed for the Swiss data but not probed to be the sole determinant for the spatial modeling. The statistical analysis of data, both at univariate and multivariate level, was followed by an exploratory spatial analysis. Many tools proposed in the literature were tested and adapted, including fractality, declustering and moving windows methods. The use of Quan-tité Morisita Index (QMI) as a procedure to evaluate data clustering in function of the radon level was proposed. The existing methods of declustering were revised and applied in an attempt to approach the global histogram parameters. The exploratory phase comes along with the definition of multiple scales of interest for indoor radon mapping in Switzerland. The analysis was done with a top-to-down resolution approach, from regional to local lev¬els in order to find the appropriate scales for modeling. In this sense, data partition was optimized in order to cope with stationary conditions of geostatistical models. Common methods of spatial modeling such as Κ Nearest Neighbors (KNN), variography and General Regression Neural Networks (GRNN) were proposed as exploratory tools. In the following section, different spatial interpolation methods were applied for a par-ticular dataset. A bottom to top method complexity approach was adopted and the results were analyzed together in order to find common definitions of continuity and neighborhood parameters. Additionally, a data filter based on cross-validation was tested with the purpose of reducing noise at local scale (the CVMF). At the end of the chapter, a series of test for data consistency and methods robustness were performed. This lead to conclude about the importance of data splitting and the limitation of generalization methods for reproducing statistical distributions. The last section was dedicated to modeling methods with probabilistic interpretations. Data transformation and simulations thus allowed the use of multigaussian models and helped take the indoor radon pollution data uncertainty into consideration. The catego-rization transform was presented as a solution for extreme values modeling through clas-sification. Simulation scenarios were proposed, including an alternative proposal for the reproduction of the global histogram based on the sampling domain. The sequential Gaussian simulation (SGS) was presented as the method giving the most complete information, while classification performed in a more robust way. An error measure was defined in relation to the decision function for data classification hardening. Within the classification methods, probabilistic neural networks (PNN) show to be better adapted for modeling of high threshold categorization and for automation. Support vector machines (SVM) on the contrary performed well under balanced category conditions. In general, it was concluded that a particular prediction or estimation method is not better under all conditions of scale and neighborhood definitions. Simulations should be the basis, while other methods can provide complementary information to accomplish an efficient indoor radon decision making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proper division plane positioning is essential to achieve faithful DNA segregation and to control daughter cell size, positioning, or fate within tissues. In Schizosaccharomyces pombe, division plane positioning is controlled positively by export of the division plane positioning factor Mid1/anillin from the nucleus and negatively by the Pom1/DYRK (dual-specificity tyrosine-regulated kinase) gradients emanating from cell tips. Pom1 restricts to the cell middle cortical cytokinetic ring precursor nodes organized by the SAD-like kinase Cdr2 and Mid1/anillin through an unknown mechanism. In this study, we show that Pom1 modulates Cdr2 association with membranes by phosphorylation of a basic region cooperating with the lipid-binding KA-1 domain. Pom1 also inhibits Cdr2 interaction with Mid1, reducing its clustering ability, possibly by down-regulation of Cdr2 kinase activity. We propose that the dual regulation exerted by Pom1 on Cdr2 prevents Cdr2 assembly into stable nodes in the cell tip region where Pom1 concentration is high, which ensures proper positioning of cytokinetic ring precursors at the cell geometrical center and robust and accurate division plane positioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: A survey was undertaken among Swiss occupational hygienists and other professionals to identify the different exposure assessment methods used, the contextual parameters observed and the uses, difficulties and possible developments of exposure models for field application. METHODS: A questionnaire was mailed to 121 occupational hygienists, all members of the Swiss Occupational Hygiene Society. A shorter questionnaire was also sent to registered occupational physicians and selected safety specialists. Descriptive statistics and multivariate analyses were performed. RESULTS: The response rate for occupational hygienists was 60%. The so-called expert judgement appeared to be the most widely used method, but its efficiency and reliability were both judged with very low scores. Long-term sampling was perceived as the most efficient and reliable method. Various determinants of exposure, such as emission rate and work activity, were often considered important, even though they were not included in the exposure assessment processes. Near field local phenomena determinants were also judged important for operator exposure estimation. CONCLUSION: Exposure models should be improved to integrate factors which are more easily accessible to practitioners. Descriptors of emission and local phenomena should also be included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experiment was carried out on unsterilized field soil with low phosphorus availability with the objective of examining the effect of cultural practices on mycorrhizal colonization and growth of common bean. The treatments were: three pre-crops (maize, wheat and fallow) followed by three soil management practices ("ploughing", mulching and bare fallow without "ploughing" during the winter months). After the cultural practices, Phaseolus vulgaris cv. Canadian Wonder was grown in this soil. Fallowing and soil disturbance reduced natural soil infectivity. Mycorrhizal infection of the bean roots occurred more rapidly in the recently cropped soil than in the fallow soil. Prior cropping with a strongly mycorrhizal plant (maize) increased infectivity even further.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past three decades, feminists and critical theorists have discussed and argued the importance of deconstructing and problematizing social science research methodology in order to question normalized hierarchies concerning the production of knowledge and the status of truth claims. Nevertheless, often, these ideas have basically remained theoretical propositions not embodied in research practices. In fact there is very little published discussion about the difficulties and limits of their practical application. In this paper we introduce some interconnected reflections starting from two different but related experiences of embodying 'feminist activist research'. Our aim is to emphasise the importance of attending to process, making mistakes and learning during fieldwork, as well as experimenting with personalized forms of analysis, such as the construction of narratives and the story-telling process.