994 resultados para soil transmitted helminthiasis
Resumo:
A study was carried out at five upazillas (Dumuria, Fakirhat, Pirojpur sadar, Gopalgonj sadar and Kalia) of five southern districts of Khulna, Bagerhat, Pirojpur, Gopalgonj and Narail to understand the comparative production performance and any effect on soil quality in case of year-round golda (Macrobrachium rosenbergii), alternate prawn-paddy and year-round paddy farming. A direct interview of 55 farmers was taken, using pretested questionnaire, and soil samples were taken from selected farms before and after each crop. Among the five upazillas, farmers in Gopalgonj sadar and Kalia are not practicing year-round golda. Rotational golda-paddy farming has been recorded to result in maximum profit, with the highest of Tk. 310,912/ha/year in 2003 at Dumuria. Only paddy farming is less profitable than other two cropping patterns, irrespective of study sites. The nutrient status of soil in rotational golda and paddy farming has been found improved, compared to that of only golda or paddy farming.
Resumo:
Despite the widespread use of stabilisation/solidification (S/S) techniques, the validation and the availability of predictive modelling of the behaviour of stabilised/solidified soils in the longer-term is very limited. The authors were involved in the assessment of the behaviour of a contaminated site in the UK treated with cement-based in-situ S/S over the first five years after treatment. In parallel, two experimental methods, namely elevated temperatures and combined elevated temperatures and accelerated carbonation, were used in the laboratory to model accelerated ageing of the site soil. A graphical technique, based on the Arrhenius equation, was then used to model the laboratory observations and the in-situ five-year behaviour. The paper presents the details of the two experimental methods used for the accelerated ageing of stabilised/solidified model site soil, the numerical predictive model and a comparison between the results of the two experimental techniques and with the site results. © 2005 Taylor & Francis Group.
Resumo:
Stabilisation, using a wide range of binders including wastes, is most effective for heavy metal soil contamination. Bioremediation techniques, including bioaugmentation to enhance soil microbial population, are most effective for organic contaminants in the soil. For mixed contaminant scenarios a combination of these two techniques is currently being investigated. An essential issue in this combined remediation system is the effect of microbial processes on the leachability of the heavy metals. This paper considers the use of zeolite and compost as binder additives combined with bioaugmentation treatments and their effect on copper leachability in a model contaminated soil. Different leaching test conditions are considered including both NRA and TCLP batch leaching tests as well as flow-through column tests. Two flow rates are applied in the flow-through tests and the two leaching tests are compared. Recommendations are given as to the effectiveness of this combined remediation technique in the immobilisation of copper. © 2005 Taylor & Francis Group.
Resumo:
Noise and vibration from underground railways is a major source of disturbance to inhabitants near subways. To help designers meet noise and vibration limits, numerical models are used to understand vibration propagation from these underground railways. However, the models commonly assume the ground is homogeneous and neglect to include local variability in the soil properties. Such simplifying assumptions add a level of uncertainty to the predictions which is not well understood. The goal of the current paper is to quantify the effect of soil inhomogeneity on surface vibration. The thin-layer method (TLM) is suggested as an efficient and accurate means of simulating vibration from underground railways in arbitrarily layered half-spaces. Stochastic variability of the soils elastic modulus is introduced using a KL expansion; the modulus is assumed to have a log-normal distribution and a modified exponential covariance kernel. The effect of horizontal soil variability is investigated by comparing the stochastic results for soils varied only in the vertical direction to soils with 2D variability. Results suggest that local soil inhomogeneity can significantly affect surface velocity predictions; 90 percent confidence intervals showing 8 dB averages and peak values up to 12 dB are computed. This is a significant source of uncertainty and should be considered when using predictions from models assuming homogeneous soil properties. Furthermore, the effect of horizontal variability of the elastic modulus on the confidence interval appears to be negligible. This suggests that only vertical variation needs to be taken into account when modelling ground vibration from underground railways. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Previous research into the behaviour of piled foundations in laterally-spreading soil deposits has concentrated on pile groups that carry small or negligible axial loads. This paper presents dynamic centrifuge test results for 2×2 pile groups with bending and geometric properties similar to real 0.5m diameter tubular steel and solid circular reinforced-concrete field piles. Axial loads applied represented upper-bounds on typical working loads. The simultaneous scaling of the relevant properties controlling both lateral and axial behaviour allows comparisons to be drawn regarding the particular mechanisms of failure that would dominate for each type of pile. Flexible reinforced-concrete piles which tend to carry lower loads were found to be dominated by lateral effects, while steel piles, which are much stiffer and usually carry greater loads are dominated by settlement considerations. © 2006 Taylor & Francis Group, London.