751 resultados para shoulder girdle


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a computer keyboard with the forearms unsupported has been proposed as a causal factor for neck/shoulder and arm/hand diagnoses. Recent laboratory and field studies have demonstrated that forearm support might be preferable to working in the traditional floating posture. The aim of this study was to determine whether providing forearm Support when using a normal computer workstation would decrease musculoskeletal discomfort in intensive computer users in a call centre. A randomised controlled study (n = 59), of 6 weeks duration was conducted. Thirty participants (Group 1) were allocated to forearm support using the desk surface with the remainder (Group 2) acting as a control group. At 6 weeks, the control group was also set up with forearm support. Both groups were then monitored for another 6 weeks. Questionnaires were used at 1, 6 and 12 weeks to obtain information about discomfort, workstation setup, working posture and comfort. Nine participants (Group 1 n = 6, Group 2 n = 3) withdrew within a week of commencing forearm support either due to discomfort or difficulty in maintaining the posture. At 6 weeks, the group using forearm support generated significantly fewer reports of discomfort in the neck and back, although the difference between the groups was not statistically significant. At 12 weeks, there were fewer reports of neck, back and wrist discomfort when preintervention discomfort was compared with post intervention discomfort. These findings indicate that for the majority of users, forearm support may be preferable to the floating Posture implicit in current guidelines for computer workstation setup. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forearm support during keyboard use has been reported to reduce neck and shoulder muscle activity and discomfort. However, the effect of forearm support on wrist posture has not been examined. The aim of this study was to examine the effect of 3 different postures during keyboard use: forearm support, wrist support and floating. The floating posture (no support) was used as the reference condition. A wrist rest was present in all test conditions. Thirteen participants completed 20 min wordprocessing tasks in each of the test conditions. Electromyography was used to monitor neck, shoulder and forearm muscle activity. Bilateral and overhead video cameras recorded left and right wrist extension, shoulder and elbow flexion and radial and ulnar deviation. The forearm support condition resulted in significantly less ulnar deviation (

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we investigate the effect of the solid surface on the fluid-fluid intermolecular potential energy. This modified fluid-fluid interaction energy due to the inducement of a solid surface is used in the grand canonical Monte Carlo (GCMC) simulation of various noble gases, nitrogen, and methane on graphitized thermal carbon black. This effect is such that the effective interaction potential energy between two particles close to surface is less than the potential energy if the solid substrate is not present. With this modification the GCMC simulation results agree extremely well with the experimental data over a wide range of pressures while the simulation results with the unmodified potential energy give rise to a shoulder near the neighborhood of monolayer coverage and the significant overprediction of the second and higher layer coverages. In particular the unmodified GCMC results exhibit very sharp change in those higher layers while the experimental data have a much gradual change in the uptake. We will illustrate this theory with adsorption data of argon, xenon, neon, nitrogen, and methane on graphitized thermal carbon black.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyethylene (PE) multiwalled carbon nanotubes (MWCNTs) with weight fractions ranging from 0.1 to 10 wt% were prepared by melt blending using a mini-twin screw extruder. The morphology and degree of dispersion of the MWCNTs in the PE matrix at different length scales was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and wide-angle X-ray diffraction (WAXD). Both individual and agglomerations of MWCNTs were evident. An up-shift of 17 cm(-1) for the G band and the evolution of a shoulder to this peak were obtained in the Raman spectra of the nanocomposites, probably due to compressive forces exerted on the MWCNTs by PE chains and indicating intercalation of PE into the MWCNT bundles. The electrical conductivity and linear viscoelastic behaviour of these nanocomposites were investigated. A percolation threshold of about 7.5 wt% was obtained and the electrical conductivity of PE was increased significantly, by 16 orders of magnitude, from 10(-20) to 10(-4) S/cm. The storage modulus (G') versus frequency curves approached a plateau above the percolation threshold with the formation of an interconnected nanotube structure, indicative of 'pseudo-solid-like' behaviour. The ultimate tensile strength and elongation at break of the nanocomposites decreased with addition of MWCNTs. The diminution of mechanical proper-ties of the nanocomposites, though concomitant with a significant increase in electrical conductivity, implies the mechanism for mechanical reinforcement for PE/MWCNT composites is filler-matrix interfacial interactions and not filler percolation. The temperature of crystallisation (T.) and fraction of PE that was crystalline (F-c) were modified by incorporating MWCNTs. The thermal decomposition temperature of PE was enhanced by 20 K on addition of 10 wt% MWCNT. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we study the effect of solid surface mediation on the intermolecular potential energy of nitrogen, and its impact on the adsorption of nitrogen on a graphitized carbon black surface and in carbon slit-shaped pores. This effect arises from the lower effective interaction potential energy between two particles close to the surface compared to the potential energy of the same two particles when they are far away from the surface. A simple equation is proposed to calculate the reduction factor and this is used in the Grand Canonical Monte Carlo (GCMC) simulation of nitrogen adsorption on graphitized thermal carbon black. With this modification, the GCMC simulation results agree extremely well with the experimental data over a wide range of pressure; the simulation results with the original potential energy (i.e. no surface mediation) give rise to a shoulder in the neighbourhood of monolayer coverage and a significant over-prediction of the second and higher layer coverages. The influence of this surface mediation on the dependence of the pore-filling pressure on the pore width is also studied. It is shown that such surface mediation has a significant effect on the pore-filling pressure. This implies that the use of the local isotherms obtained from the potential model without surface mediation could give rise to a serious error in the determination of the pore-size distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to compare average muscle fiber conduction velocity (CV) and its changes over time in the upper trapezius muscle during a repetitive upper limb task in people with chronic neck pain and in healthy controls. Surface EMG signals were detected bilaterally from the upper trapezius muscle of 19 patients and nine healthy controls using linear adhesive arrays of four electrodes. Subjects were asked to tap their hands in a cyclic manner between targets positioned mid-thigh and 120 degrees of shoulder flexion, to the beat of a metronome set at 88 beats/min for up to 5 min. Muscle fiber CV and instantaneous mean power spectral frequency were estimated for each cycle at the time instant corresponding to 90 degrees of shoulder flexion. Average muscle fiber CV of the upper trapezius muscle was higher in people with chronic neck pain (mean +/- SE, 4.8 +/- 0.1 m/s) than in control subjects (4.4 +/- 0.1 m/s; P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Caveolae are an abundant feature of many animal cells. However, the exact function of caveolae remains unclear. We have used the zebrafish, Danio rerio, as a system to understand caveolae function focusing on the muscle-specific caveolar protein, caveolin-3 (Cav3). We have identified caveolin-1 (alpha and beta), caveolin-2 and Cav3 in the zebrafish. Zebrafish Cav3 has 72% identity to human CAV3, and the amino acids altered in human muscle diseases are conserved in the zebrafish protein. During embryonic development, cav3 expression is apparent by early segmentation stages in the first differentiating muscle precursors, the adaxial cells and slightly later in the notochord. cav3 expression appears in the somites during mid-segmentation stages and then later in the pectoral fins and facial muscles. Cav3 and caveolae are located along the entire sarcolemma of late stage embryonic muscle fibers, whereas beta-dystroglycan is restricted to the muscle fiber ends. Down-regulation of Cav3 expression causes gross muscle abnormalities and uncoordinated movement. Ultrastructural analysis of isolated muscle fibers reveals defects in myoblast fusion and disorganized myofibril and membrane systems. Expression of the zebrafish equivalent to a human muscular dystrophy mutant, CAV3P104L, causes severe disruption of muscle differentiation. In addition, knockdown of Cav3 resulted in a dramatic up-regulation of eng1a expression resulting in an increase in the number of muscle pioneer-like cells adjacent to the notochord. These studies provide new insights into the role of Cav3 in muscle development and demonstrate its requirement for correct intracellular organization and myoblast fusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the physiological and psychological factors that contribute to healthy and pathological balance control in man has been made difficult by the confounding effects of the perturbations used to test balance reactions. The present study examined how postural responses were influenced by the acceleration-deceleration interval of an unexpected horizontal translation. Twelve adult males maintained balance during unexpected forward and backward surface translations with two different acceleration-deceleration intervals and presentation orders (serial or random). SHORT perturbations consisted of an initial acceleration (peak acceleration 1.3 m s(-2); duration 300 ms) followed 100 ms later by a deceleration. LONG perturbations had the same acceleration as SHORT perturbations, followed by a 2-s interval of constant velocity before deceleration. Surface and intra-muscular electromyography (EMG) from the leg, trunk, and shoulder muscles were recorded along with motion and force plate data. LONG perturbations induced larger trunk displacements compared to SHORT perturbations when presented randomly and larger EMG responses in proximal and distal muscles during later (500-800 ms) response intervals. During SHORT perturbations, activity in some antagonist muscles was found to be associated with deceleration and not the initial acceleration of the support surface. When predictable, SHORT perturbations facilitated the use of anticipatory mechanisms to attenuate early (100-400 ms) EMG response amplitudes, ankle torque change and trunk displacement. In contrast, LONG perturbations, without an early deceleration effect, did not facilitate anticipatory changes when presented in a predictable order. Therefore, perturbations with a short acceleration-deceleration interval can influence triggered postural responses through reactive effects and, when predictable with repeated exposure, through anticipatory mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The abdominal muscles have an important role in control and movement of the lumbar spine and pelvis. Given there is new evidence of morphological and functional differences between distinct anatomical regions of the abdominal muscles, this study investigated whether there are regional differences in postural activity of these muscles and whether recruitment varies between different body positions. Eleven subjects with no history of low back pain that affected function or for which they sought treatment participated in the study. Electromyographic (EMG) activity of the upper, middle and lower regions of transversus abdominis (TrA), the middle and lower regions of obliquus internus abdominis (OI) and the middle region of obliquus externus abdominis (OE) was recorded using intramuscular electrodes. All subjects performed rapid, unilateral shoulder flexion in standing and six subjects also moved their upper limb in sitting. There were regional differences in the postural responses of TrA with limb movement. Notably, the onset of EMG of the upper region was later than that of the lower and middle regions. There were no differences in the EMG onsets of lower and middle TrA or OI. The postural responses of the abdominal muscles were also found to differ between body positions, with recruitment delayed in sitting compared to standing. This study showed that there is regional differentiation in TrA activity with challenges to postural control and that body position influences the postural responses of the abdominal muscles. These results may reflect variation in the contribution of abdominal muscle regions to stability of the trunk. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Caveolae are striking morphological features of the plasma membrane of mammalian cells. Caveolins, the major proteins of caveolae, play a crucial role in the formation of these invaginations of the plasma membrane; however, the precise mechanisms involved are only just starting to be unravelled. Recent studies suggest that caveolae are stable structures first generated in the Golgi complex. Their formation and exit from the Golgi complex is associated with caveolin oligomerisation, acquisition of detergent insolubility, and association with cholesterol. Modelling of caveolin-membrane interactions together with in vitro studies of caveolin peptides are providing new insights into how caveolin-lipid interactions could generate the unique architecture of the caveolar domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study Design. Biomechanical study of unembalmed human lumbar segments. Objective. To investigate the effects of tensioning the lumbar fasciae ( transversus abdominis [TrA]) aponeurosis) on segment stiffness during flexion and extension. Summary of Background Data. Animal and human studies suggest that TrA may influence intersegmental movement via tension in the middle and posterior layers of lumbar fasciae ( MLF, PLF). Methods. Compressive flexion and extension moments were applied to 17 lumbar segments from 9 unembalmed cadavers with 20 N lateral tension of the TrA aponeurosis during: 1) static tests: load was compared when fascial tension was applied during static compressive loads into flexion-extension; 2) cyclic loading tests: load, axial displacement, and stiffness were compared during repeated compressive loading cycles into flexion-extension. After testing, the PLF was incised to determine the tension transmitted by each layer. Results. At all segments and loads (< 200 N), fascial tension increased resistance to flexion loads by similar to 9.5 N. In 15 of 17, fascial tension decreased resistance to extension by similar to 6.6 N. Fascial tension during cyclic flexion loading decreased axial displacement by 26% at the onset of loading (0 - 2 N) and 2% at 450 N ( 13 of 17). During extension loading, fascial tension increased displacement at the onset of loading ( 10 of 17) by similar to 23% and slightly (1%) decreased displacement at 450 N. Segment stiffness was increased by 6 N/mm in flexion (44% at 25 N) and decreased by 2 N/mm (8% at 25 N) in extension. More than 85% of tension was transmitted through the MLF. Conclusions. Tension on the lumbar fasciae simulating moderate contraction of TrA affects segmental stiffness, particularly toward the neutral zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Currently 1 in 11 women over the age of 60 in Australia are diagnosed with breast cancer. Following treatment, most breast cancer patients are left with shoulder and arm impairments which can impact significantly on quality of life and interfere substantially with activities of daily living. The primary aim of the proposed study is to determine whether upper limb impairments can be prevented by undertaking an exercise program of prolonged stretching and resistance training, commencing soon after surgery. Methods/design: We will recruit 180 women who have had surgery for early stage breast cancer to a multicenter single-blind randomized controlled trial. At 4 weeks post surgery, women will be randomly assigned to either an exercise group or a usual care ( control) group. Women allocated to the exercise group will perform exercises daily, and will be supervised once a week for 8 weeks. At the end of the 8 weeks, women will be given a home-based training program to continue indefinitely. Women in the usual care group will receive the same care as is now typically provided, i.e. a visit by the physiotherapist and occupational therapist while an inpatient, and receipt of pamphlets. All subjects will be assessed at baseline, 8 weeks, and 6 months later. The primary measure is arm symptoms, derived from a breast cancer specific questionnaire (BR23). In addition, range of motion, strength, swelling, pain and quality of life will be assessed. Discussion: This study will determine whether exercise commencing soon after surgery can prevent secondary problems associated with treatment of breast cancer, and will thus provide the basis for successful rehabilitation and reduction in ongoing problems and health care use. Additionally, it will identify whether strengthening exercises reduce the incidence of arm swelling. Trial Registration: The protocol for this study is registered with the Australian Clinical Trials Registry (ACTRN012606000050550).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer display height and desk design to allow forearm support are two critical design features of workstations for information technology tasks. However there is currently no 3D description of head and neck posture with different computer display heights and no direct comparison to paper based information technology tasks. There is also inconsistent evidence on the effect of forearm support on posture and no evidence on whether these features interact. This study compared the 3D head, neck and upper limb postures of 18 male and 18 female young adults whilst working with different display and desk design conditions. There was no substantial interaction between display height and desk design. Lower display heights increased head and neck flexion with more spinal asymmetry when working with paper. The curved desk, designed to provide forearm support, increased scapula elevation/protraction and shoulder flexion/abduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acuity for elbow joint position sense (JPS) is reduced when head position is modified. Movement of the head is associated with biomechanical changes in the neck and shoulder musculoskeletal system, which may explain changes in elbow JPS. The present study aimed to determine whether elbow JPS is also influenced by illusory changes in head position. Simultaneous vibration of sternocleidomastoid (SCM) and the contralateral splenius was applied to 14 healthy adult human subjects. Muscle vibration or passive head rotation was introduced between presentation and reproduction of a target elbow position. Ten out of 14 subjects reported illusions consistent with lengthening of the vibrated muscles. In these 10 subjects, absolute error for elbow JPS increased with left SCM/right splenius vibration but not with right SCM/left splenius vibration. Absolute error also increased with right rotation, with a trend for increased error with left rotation. These results demonstrated that both actual and illusory changes in head position are associated with diminished acuity for elbow JPS, suggesting that the influence of head position on upper limb JPS depends, at least partially, on perceived head position.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to determine whether postural activity of the pelvic floor (PF) and abdominal muscles differs between continent and incontinent women during rapid arm movements that present a postural challenge to the trunk. A further aim was to study the effect of bladder filling. Electromyographic activity (EMG) of the PF, abdominal, erector spinae (ES), and deltoid muscles was recorded with surface electrodes. During rapid shoulder flexion and extension, PF EMG increased before that of the deltoid in continent women, but after the deltoid in incontinent women (p= 0.002). In many incontinent women, PF EMG decreased before the postural activation. Although delayed, postural PF EMG amplitude was greater in women with incontinence ( p= 0.010). In both groups, PF EMG decreased and abdominal and ES EMG increased when the bladder was moderately full. These findings would be expected to have negative consequences for continence and lumbopelvic stability in women with incontinence.