997 resultados para sequential niche technique
Resumo:
Objective: To assess the application of aponeurotic sling by a modified technique with direct visualization of needles in patients with stress urinary incontinence. Methods: we applied the Kings Health Questionnaire (KHQ) for quality of life, gynecological examination, urinalysis I and urine culture approximately seven days prior to the urodynamic study (UDS) and the one-hour PAD test in patients undergoing making aponeurotic sling with its passing through the retropubic route with direct visualization of the needle, PAD test and King's Helth Questionnaire before and after surgery. Results: The mean age was 50.6 years, BMI of 28 and Leak Pressure (LP) 58,5cm H2O; 89% were Caucasian. Forty-six of them were monitored for three and six months, 43 for 12 months. The objective cure rate at 12 months postoperatively was approximately 93.5%. In evaluating quality of life, we observed a significant improvement in 12 months postoperatively compared with the preoperative period. There was no no urethral/bladder injury. As adverse results, we had one persistent urinary retention (2.3%), who was submitted to urethrolysis, currently without incontinence. Conclusion: The proposed procedure is safe as for the risk of bladder or urethral injuries, promoting significant improvement in quality of life and objective cure.
Resumo:
The Shadow Moiré fringe patterns are level lines of equal depth generated by interference between a master grid and its shadow projected on the surface. In simplistic approach, the minimum error is about the order of the master grid pitch, that is, always larger than 0,1 mm, resulting in an experimental technique of low precision. The use of a phase shift increases the accuracy of the Shadow Moiré technique. The current work uses the phase shifting method to determine the surfaces three-dimensional shape using isothamic fringe patterns and digital image processing. The current study presents the method and applies it to images obtained by simulation for error evaluation, as well as to a buckled plate, obtaining excellent results. The method hands itself particularly useful to decrease the errors in the interpretation of the Moiré fringes that can adversely affect the calculations of displacements in pieces containing many concave and convex regions in relatively small areas.
Resumo:
The formal calibration procedure of a phase fraction meter is based on registering the outputs resulting from imposed phase fractions at known flow regimes. This can be straightforwardly done in laboratory conditions, but is rarely the case in industrial conditions, and particularly for on-site applications. Thus, there is a clear need for less restrictive calibration methods regarding to the prior knowledge of the complete set of inlet conditions. A new procedure is proposed in this work for the on-site construction of the calibration curve from total flown mass values of the homogeneous dispersed phase. The solution is obtained by minimizing a convenient error functional, assembled with data from redundant tests to handle the intrinsic ill-conditioned nature of the problem. Numerical simulations performed for increasing error levels demonstrate that acceptable calibration curves can be reconstructed, even from total mass measured within a precision of up to 2%. Consequently, the method can readily be applied, especially in on-site calibration problems in which classical procedures fail due to the impossibility of having a strict control of all the input/output parameters.
Resumo:
Information gained from the human genome project and improvements in compound synthesizing have increased the number of both therapeutic targets and potential lead compounds. This has evolved a need for better screening techniques to have a capacity to screen number of compound libraries against increasing amount of targets. Radioactivity based assays have been traditionally used in drug screening but the fluorescence based assays have become more popular in high throughput screening (HTS) as they avoid safety and waste problems confronted with radioactivity. In comparison to conventional fluorescence more sensitive detection is obtained with time-resolved luminescence which has increased the popularity of time-resolved fluorescence resonance energy transfer (TR-FRET) based assays. To simplify the current TR-FRET based assay concept the luminometric homogeneous single-label utilizing assay technique, Quenching Resonance Energy Transfer (QRET), was developed. The technique utilizes soluble quencher to quench non-specifically the signal of unbound fraction of lanthanide labeled ligand. One labeling procedure and fewer manipulation steps in the assay concept are saving resources. The QRET technique is suitable for both biochemical and cell-based assays as indicated in four studies:1) ligand screening study of β2 -adrenergic receptor (cell-based), 2) activation study of Gs-/Gi-protein coupled receptors by measuring intracellular concentration of cyclic adenosine monophosphate (cell-based), 3) activation study of G-protein coupled receptors by observing the binding of guanosine-5’-triphosphate (cell membranes), and 4) activation study of small GTP binding protein Ras (biochemical). Signal-to-background ratios were between 2.4 to 10 and coefficient of variation varied from 0.5 to 17% indicating their suitability to HTS use.
Resumo:
The Amplified Fragment Length Polymorphism (AFLP) technique was used to access genetic diversity between three domestic and nine wild proso millet biotypes from the United States and Canada. Eight primer combinations detected 39 polymorphic DNA fragments, with the genetic distance estimates among biotypes ranging from 0.02 to 0.04. Colorado-Weld County black seeded and Wyoming-Platte County were the most distinct biotypes according to the dissimilarity level. A UPGMA cluster analysis revealed two distinct groups of proso millet without any geographic association. Six weed biotypes exhibiting some characters of cultivated plants were grouped together with domesticated biotypes of proso millet while the three typical wild phenotypes were clearly clustered into another group according to AFLP markers.
Resumo:
Tank mixtures among herbicides of different action mechanisms might increase weed control spectrum and may be an important strategy for preventing the development of resistance in RR soybean. However, little is known about the effects of these herbicide combinations on soybean plants. Hence, two experiments were carried out aiming at evaluating the selectivity of glyphosate mixtures with other active ingredients applied in postemergence to RR soybean. The first application was carried out at V1 to V2 soybean stage and the second at V3 to V4 (15 days after the first one). For experiment I, treatments (rates in g ha-1) evaluated were composed by two sequential applications: the first one with glyphosate (720) in tank mixtures with cloransulam (30.24), fomesafen (125), lactofen (72), chlorimuron (12.5), flumiclorac (30), bentazon (480) and imazethapyr (80); the second application consisted of isolated glyphosate (480). In experiment II, treatments also consisted of two sequential applications, but tank mixtures as described above were applied as the second application. The first one in this experiment consisted of isolated glyphosate (720). For both experiments, sequential applications of glyphosate alone at 720/480, 960/480, 1200/480 and 960/720 (Expt. I) or 720/480, 720/720, 720/960 and 720/1200 (Expt. II) were used as control treatments. Applications of glyphosate tank mixtures with other herbicides are more selective to RR soybean when applied at younger stages whereas applications at later stages might cause yield losses, especially when glyphosate is mixed with lactofen and bentazon.
Resumo:
The action of herbicides that affect the integrity of cell membranes and cause leakage, like PPO-inhibitors, can be detected by measuring the electric conductivity (EC) of a solution in which the plant tissue target is incubated in the presence of herbicide. The objectives of this work were to confirm PPO resistance in a new Euphorbia heterophylla (EPHHL) biotype, and to compare the electrolyte leakage from R and S to PPO-inhibitors biotypes, using two different methods of incubation in a solution containing herbicides. One experiment was carried in greenhouse and three in laboratory, with a completely randomized design. In the greenhouse experiment, four biotypes of EPHHL were sprayed with seven rates of fomesafen to confirm resistance in suspected biotypes. Leaf disks from R and S EPHHL biotypes in the second and the third experiments and entire leaves in the fourth experiment were incubated in a solution containing PPO-inhibitors to subsequently determine EC of solution. The study confirmed the resistance to PPO-inhibitors in two EPHHL biotypes. There were no significant differences between S and R biotypes in the experiments with the incubation of leaf disks, but incubation of entire leaves of EPHHL S biotype showed higher EC when in a solution with fomesafen, in comparison to the R biotype. The results of this work are an indirect evidence that resistance to PPO-inhibitors is related to lower absorption of herbicide by the shoots and also to some kind of mechanism to cope with oxidative stress.
Resumo:
The objective of this study was to optimize and validate the solid-liquid extraction (ESL) technique for determination of picloram residues in soil samples. At the optimization stage, the optimal conditions for extraction of soil samples were determined using univariate analysis. Ratio soil/solution extraction, type and time of agitation, ionic strength and pH of extraction solution were evaluated. Based on the optimized parameters, the following method of extraction and analysis of picloram was developed: weigh 2.00 g of soil dried and sieved through a sieve mesh of 2.0 mm pore, add 20.0 mL of KCl concentration of 0.5 mol L-1, shake the bottle in the vortex for 10 seconds to form suspension and adjust to pH 7.00, with alkaline KOH 0.1 mol L-1. Homogenate the system in a shaker system for 60 minutes and then let it stand for 10 minutes. The bottles are centrifuged for 10 minutes at 3,500 rpm. After the settlement of the soil particles and cleaning of the supernatant extract, an aliquot is withdrawn and analyzed by high performance liquid chromatography. The optimized method was validated by determining the selectivity, linearity, detection and quantification limits, precision and accuracy. The ESL methodology was efficient for analysis of residues of the pesticides studied, with percentages of recovery above 90%. The limits of detection and quantification were 20.0 and 66.0 mg kg-1 soil for the PVA, and 40.0 and 132.0 mg kg-1 soil for the VLA. The coefficients of variation (CV) were equal to 2.32 and 2.69 for PVA and TH soils, respectively. The methodology resulted in low organic solvent consumption and cleaner extracts, as well as no purification steps for chromatographic analysis were required. The parameters evaluated in the validation process indicated that the ESL methodology is efficient for the extraction of picloram residues in soils, with low limits of detection and quantification.
Resumo:
The aim of this thesis was to identify the best grease removal technique with the application of low power of UV light to TiO2 coated grease filters. The treatment with various power series of ozone generating and ozone free lamps to normal grease filters and TiO2 coated grease filters were examined and the obtained results are compared to each other in this paper. The effect of ozone reaction was observed and compared with the effect of TiO2. The experiments were solely based on the photo oxidation and photo catalytic oxidation reactions. TiO2 is a green catalyst used in the photocatalytic reaction. Sunflower oil was used for grease production and tetracholoroethylene as a solvent. Grease samples were collected from the ventilation duct connected to the cooking hood system. Sample extraction was done in ultrasonic bath with the principle of sonication. The sample analysis was done by FTIR machine. The result determining the concentration of grease was the quantification of saturated C-H bonds in the chosen peak group of the spectrum. A very low power of UVC light functions perfectly with the Titanium dioxide. The experimental results have shown the combined treatment of titanium dioxide and UV light is an effective method in grease removal process. The photocatalytic reaction with titanium dioxide is better than photo oxidation reaction with ozone treatment. Photocatalytic reaction is environmentally friendly, energy efficient and economical.
Resumo:
Nowadays advanced simulation technologies of semiconductor devices occupies an important place in microelectronics production process. Simulation helps to understand devices internal processes physics, detect new effects and find directions for optimization. Computer calculation reduces manufacturing costs and time. Modern simulation suits such as Silcaco TCAD allow simulating not only individual semiconductor structures, but also these structures in the circuit. For that purpose TCAD include MixedMode tool. That tool can simulate circuits using compact circuit models including semiconductor structures with their physical models. In this work, MixedMode is used for simulating transient current technique setup, which include detector and supporting electrical circuit. This technique was developed by RD39 collaboration project for investigation radiation detectors radiation hard properties.
Resumo:
In the latter days, human activities constantly increase greenhouse gases emissions in the atmosphere, which has a direct impact on a global climate warming. Finland as European Union member, developed national structural plan to promote renewable energy generation, pursuing the aspects of Directive 2009/28/EC and put it on the sharepoint. Finland is on a way of enhancing national security of energy supply, increasing diversity of the energy mix. There are plenty significant objectives to develop onshore and offshore wind energy generation in country for a next few decades, as well as another renewable energy sources. To predict the future changes, there are a lot of scenario methods developed and adapted to energy industry. The Master’s thesis explored “Fuzzy cognitive maps” approach in scenarios developing, which captures expert’s knowledge in a graphical manner and using these captures for a raw scenarios testing and refinement. There were prospects of Finnish wind energy development for the year of 2030 considered, with aid of FCM technique. Five positive raw scenarios were developed and three of them tested against integrated expert’s map of knowledge, using graphical simulation. The study provides robust scenarios out of the preliminary defined, as outcome, assuming the impact of results, taken after simulation. The thesis was conducted in such way, that there will be possibilities to use existing knowledge captures from expert panel, to test and deploy different sets of scenarios regarding to Finnish wind energy development.
Resumo:
Environmental issues, including global warming, have been serious challenges realized worldwide, and they have become particularly important for the iron and steel manufacturers during the last decades. Many sites has been shut down in developed countries due to environmental regulation and pollution prevention while a large number of production plants have been established in developing countries which has changed the economy of this business. Sustainable development is a concept, which today affects economic growth, environmental protection, and social progress in setting up the basis for future ecosystem. A sustainable headway may attempt to preserve natural resources, recycle and reuse materials, prevent pollution, enhance yield and increase profitability. To achieve these objectives numerous alternatives should be examined in the sustainable process design. Conventional engineering work cannot address all of these substitutes effectively and efficiently to find an optimal route of processing. A systematic framework is needed as a tool to guide designers to make decisions based on overall concepts of the system, identifying the key bottlenecks and opportunities, which lead to an optimal design and operation of the systems. Since the 1980s, researchers have made big efforts to develop tools for what today is referred to as Process Integration. Advanced mathematics has been used in simulation models to evaluate various available alternatives considering physical, economic and environmental constraints. Improvements on feed material and operation, competitive energy market, environmental restrictions and the role of Nordic steelworks as energy supplier (electricity and district heat) make a great motivation behind integration among industries toward more sustainable operation, which could increase the overall energy efficiency and decrease environmental impacts. In this study, through different steps a model is developed for primary steelmaking, with the Finnish steel sector as a reference, to evaluate future operation concepts of a steelmaking site regarding sustainability. The research started by potential study on increasing energy efficiency and carbon dioxide reduction due to integration of steelworks with chemical plants for possible utilization of available off-gases in the system as chemical products. These off-gases from blast furnace, basic oxygen furnace and coke oven furnace are mainly contained of carbon monoxide, carbon dioxide, hydrogen, nitrogen and partially methane (in coke oven gas) and have proportionally low heating value but are currently used as fuel within these industries. Nonlinear optimization technique is used to assess integration with methanol plant under novel blast furnace technologies and (partially) substitution of coal with other reducing agents and fuels such as heavy oil, natural gas and biomass in the system. Technical aspect of integration and its effect on blast furnace operation regardless of capital expenditure of new operational units are studied to evaluate feasibility of the idea behind the research. Later on the concept of polygeneration system added and a superstructure generated with alternative routes for off-gases pretreatment and further utilization on a polygeneration system producing electricity, district heat and methanol. (Vacuum) pressure swing adsorption, membrane technology and chemical absorption for gas separation; partial oxidation, carbon dioxide and steam methane reforming for methane gasification; gas and liquid phase methanol synthesis are the main alternative process units considered in the superstructure. Due to high degree of integration in process synthesis, and optimization techniques, equation oriented modeling is chosen as an alternative and effective strategy to previous sequential modelling for process analysis to investigate suggested superstructure. A mixed integer nonlinear programming is developed to study behavior of the integrated system under different economic and environmental scenarios. Net present value and specific carbon dioxide emission is taken to compare economic and environmental aspects of integrated system respectively for different fuel systems, alternative blast furnace reductants, implementation of new blast furnace technologies, and carbon dioxide emission penalties. Sensitivity analysis, carbon distribution and the effect of external seasonal energy demand is investigated with different optimization techniques. This tool can provide useful information concerning techno-environmental and economic aspects for decision-making and estimate optimal operational condition of current and future primary steelmaking under alternative scenarios. The results of the work have demonstrated that it is possible in the future to develop steelmaking towards more sustainable operation.
Resumo:
Adrenocortical autoantibodies (ACA), present in 60-80% of patients with idiopathic Addison's disease, are conventionally detected by indirect immunofluorescence (IIF) on frozen sections of adrenal glands. The large-scale use of IIF is limited in part by the need for a fluorescence microscope and the fact that histological sections cannot be stored for long periods of time. To circumvent these restrictions we developed a novel peroxidase-labelled protein A (PLPA) technique for the detection of ACA in patients with Addison's disease and compared the results with those obtained with the classical IIF assay. We studied serum samples from 90 healthy control subjects and 22 patients with Addison's disease, who had been clinically classified into two groups: idiopathic (N = 13) and granulomatous (N = 9). ACA-PLPA were detected in 10/22 (45%) patients: 9/13 (69%) with the idiopathic form and 1/9 (11%) with the granulomatous form, whereas ACA-IIF were detected in 11/22 patients (50%): 10/13 (77%) with the idiopathic form and 1/9 (11%) with the granulomatous form. Twelve of the 13 idiopathic addisonians (92%) were positive for either ACA-PLPA or ACA-IIF, but only 7 were positive by both methods. In contrast, none of 90 healthy subjects was found to be positive for ACA. Thus, our study shows that the PLPA-based technique is useful, has technical advantages over the IIF method (by not requiring the use of a fluorescence microscope and by permitting section storage for long periods of time). However, since it is only 60% concordant with the ACA-IIF method, it should be considered complementary instead of an alternative method to IIF for the detection of ACA in human sera.
Resumo:
Microbial pathogens such as bacillus Calmette-Guérin (BCG) induce the activation of macrophages. Activated macrophages can be characterized by the increased production of reactive oxygen and nitrogen metabolites, generated via NADPH oxidase and inducible nitric oxide synthase, respectively, and by the increased expression of major histocompatibility complex class II molecules (MHC II). Multiple microassays have been developed to measure these parameters. Usually each assay requires 2-5 x 10(5) cells per well. In some experimental conditions the number of cells is the limiting factor for the phenotypic characterization of macrophages. Here we describe a method whereby this limitation can be circumvented. Using a single 96-well microassay and a very small number of peritoneal cells obtained from C3H/HePas mice, containing as little as <=2 x 10(5) macrophages per well, we determined sequentially the oxidative burst (H2O2), nitric oxide production and MHC II (IAk) expression of BCG-activated macrophages. More specifically, with 100 µl of cell suspension it was possible to quantify H2O2 release and nitric oxide production after 1 and 48 h, respectively, and IAk expression after 48 h of cell culture. In addition, this microassay is easy to perform, highly reproducible and more economical.
Resumo:
Tämä työ tutkii ja tarkastelee transitio-kokeilua ravinnetaloudessa. Transitio-kokeilu on toimintatutkimusprojekti, joka toteutetaan systeemisen muutoksen ajattelun mukaisesti alhaalta ylöspäin. Ravinnetalous määritetään tarkemmin työn kautta sekä analysoidaan monitaso-perspektiivin näkökulmasta. Ravinnetalous on terminä varsin tuntematon ja tarvitsee enemmän tunnettavuutta laajemman yleisön edessä. Transitio-areenan ja transitio-visioiden kehittäminen ovat työn keskipisteessä, koska ne ovat tärkeimpiä vaiheita transition alkuvaiheessa. Joukko sidosryhmätoimijoita osallistuu transitio areenaan sekä visioiden jatkokehittelyyn. Visio(t) luodaan ensisijaisesti backcasting-menetelmällä, jota myös täydennetään tavanomaisella ennustamisella. Backcasting- menetelmä on osin osallistava ja siinä käytetään ravinteiden planeettarajoja kvantitatiivisina pääperiaatteina, minkä tuloksena myös visiot ovat osin kvantitatiivisia. Transitio areenan kokoaminen ja fasilitointi aiheuttavat hankalia kysymyksiä, jotka tarvitsevat jatko-tutkimusta. Alhaalta-ylöspäin organisoitu transitio-arena houkuttelee niche-toimijoita, mutta epäonnistuu sitouttamaan julkisen vallan toimijoita. Toimintamallin voimasuhteet, politiikka ja transition vakiinnuttaminen tulisivat olla jatko-toimenpiteinä niin tutkimuksessa kuin toiminnassakin.