999 resultados para sensor planning
Resumo:
Recent advances in Information and Communication Technology (ICT), especially those related to the Internet of Things (IoT), are facilitating smart regions. Among many services that a smart region can offer, remote health monitoring is a typical application of IoT paradigm. It offers the ability to continuously monitor and collect health-related data from a person, and transmit the data to a remote entity (for example, a healthcare service provider) for further processing and knowledge extraction. An IoT-based remote health monitoring system can be beneficial in rural areas belonging to the smart region where people have limited access to regular healthcare services. The same system can be beneficial in urban areas where hospitals can be overcrowded and where it may take substantial time to avail healthcare. However, this system may generate a large amount of data. In order to realize an efficient IoT-based remote health monitoring system, it is imperative to study the network communication needs of such a system; in particular the bandwidth requirements and the volume of generated data. The thesis studies a commercial product for remote health monitoring in Skellefteå, Sweden. Based on the results obtained via the commercial product, the thesis identified the key network-related requirements of a typical remote health monitoring system in terms of real-time event update, bandwidth requirements and data generation. Furthermore, the thesis has proposed an architecture called IReHMo - an IoT-based remote health monitoring architecture. This architecture allows users to incorporate several types of IoT devices to extend the sensing capabilities of the system. Using IReHMo, several IoT communication protocols such as HTTP, MQTT and CoAP has been evaluated and compared against each other. Results showed that CoAP is the most efficient protocol to transmit small size healthcare data to the remote servers. The combination of IReHMo and CoAP significantly reduced the required bandwidth as well as the volume of generated data (up to 56 percent) compared to the commercial product. Finally, the thesis conducted a scalability analysis, to determine the feasibility of deploying the combination of IReHMo and CoAP in large numbers in regions in north Sweden.
Resumo:
The focus of the research is on the derivation of the valid and reliable performance results regarding establishment and launching of the new full-scale industrial facility, considering the overall current conditions for the project realization in and out of Russia. The study demonstrates the process of the new facility concept development, with following perfor-mance calculation, comparative analyzes conduction, life-cycle simulations, performance indicators derivation and project`s sustainability evaluation. To unite and process the entire input parameters complexity, regards the interlacing between the project`s internal technical and commercial sides on the one hand, and consider all the specifics of the Russian conditions for doing business on the other hand, was developed the unique model for the project`s performance calculation, simulations and results representation. The complete research incorporates all corresponding data to substantiate the assigned facility`s design, sizing and output capacity for high quality and cost efficient ferrous pipe-line accessories manufacturing, as well as, demonstrates that this project could be suc-cessfully realized in current conditions in Russia and highlights the room for significant performance and sustainability improvements based on the indexes of the derived KPIs.
Resumo:
Finnish Defence Studies is published under the auspices of the National Defence University, and the contributions reflect the fields of research and teaching of the University. Finnish Defence Studies will occasionally feature documentation on Finnish Security Policy. Views expressed are those of the authors and do not necessarily imply endorsement by the National Defence University.
Resumo:
Hydrogen (H2) fuel cells have been considered a promising renewable energy source. The recent growth of H2 economy has required highly sensitive, micro-sized and cost-effective H2 sensor for monitoring concentrations and alerting to leakages due to the flammability and explosiveness of H2 Titanium dioxide (TiO2) made by electrochemical anodic oxidation has shown great potential as a H2 sensing material. The aim of this thesis is to develop highly sensitive H2 sensor using anodized TiO2. The sensor enables mass production and integration with microelectronics by preparing the oxide layer on suitable substrate. Morphology, elemental composition, crystal phase, electrical properties and H2 sensing properties of TiO2 nanostructures prepared on Ti foil, Si and SiO2/Si substrates were characterized. Initially, vertically oriented TiO2 nanotubes as the sensing material were obtained by anodizing Ti foil. The morphological properties of tubes could be tailored by varying the applied voltages of the anodization. The transparent oxide layer creates an interference color phenomena with white light illumination on the oxide surface. This coloration effect can be used to predict the morphological properties of the TiO2 nanostructures. The crystal phase transition from amorphous to anatase or rutile, or the mixture of anatase and rutile was observed with varying heat treatment temperatures. However, the H2 sensing properties of TiO2 nanotubes at room temperature were insufficient. H2 sensors using TiO2 nanostructures formed on Si and SiO2/Si substrates were demonstrated. In both cases, a Ti layer deposited on the substrates by a DC magnetron sputtering method was successfully anodized. A mesoporous TiO2 layer obtained on Si by anodization in an aqueous electrolyte at 5°C showed diode behavior, which was influenced by the work function difference of Pt metal electrodes and the oxide layer. The sensor enabled the detection of H2 (20-1000 ppm) at low operating temperatures (50–140°C) in ambient air. A Pd decorated tubular TiO2 layer was prepared on metal electrodes patterned SiO2/Si wafer by anodization in an organic electrolyte at 5°C. The sensor showed significantly enhanced H2 sensing properties, and detected hydrogen in the range of a few ppm with fast response/recovery time. The metal electrodes placed under the oxide layer also enhanced the mechanical tolerance of the sensor. The concept of TiO2 nanostructures on alternative substrates could be a prospect for microelectronic applications and mass production of gas sensors. The gas sensor properties can be further improved by modifying material morphologies and decorating it with catalytic materials.
Resumo:
Enterprise resource planning (ERP) software is used to combine all the functions happening inside the organization with the help of one software. All the data is centralized which makes it easy to manage information for all participants. The literature on ERP is studied thoroughly the whole process of adoption till the implementation and final evaluations. But studies that focus on small and medium sized enterprises are limited in number when compared to the large scale enterprises. In case of Pakistan, research is very limited. In this thesis, the author tries to analyze the current status of SMEs usage of ERP system. The benefits obtained and challenges faced by SMEs of Pakistan are studied. Framework presented by Shang and Seddon (2000) is used to understand the benefits obtained by the SMEs in Pakistan. This is a comprehensive framework that classifies the benefits obtained by the ERP adoption, into five categories: operational benefits, managerial benefits, Strategic benefits, IT benefits, and Organizational benefits. The results show that SMEs of Pakistan are also getting many benefits after adoption of ERP. Most of the firms had implemented SAP software. Operational benefits were mentioned by all the firms. The most important benefits were report generation, quick access to critical information, better product and cost planning. Respondents also mentioned that they had reduced corruption as a result of ERP implementation. It is also an important benefit considering high corruption rate in Pakistan. Along with benefits, challenges faced by Pakistani SMEs included infrastructure problems like electricity, difficulties with integration of one module with other module, costs of adoption and lack of skilled ERP consultants. Further studies in this regard can be conducted on cloud based ERP which is fast growing all around the world.
Resumo:
The purpose of this study is to explore how scenarios can be exploited in strategic assessment of the external business environment. One of the key challenges for managers worldwide is to adapt their businesses to the ever-changing business environment. As the companies’ external business environment is constantly presenting new opportunities and threats, it is extremely important that companies continuously monitor the possible changes happening around it. As the speed of change rises, assessing the future has become more and more vital. The study was conducted as an exploratory research and the research strategy was influenced by scenario planning and case study strategy. The study examined the European pet food sector from the future point of view. Qualitative study was chosen as research approach and empirical data was collected primarily by seven expert interviews. The secondary data about the sector was applied as complementary empirical data. In the theoretical part of the research it was discovered that nowadays, traditional analysis frameworks are ill-suited for strategic assessment of the external business environment. This is why a self-created combination framework for analysis was employed both as study’s theoretical framework and analysis technique. Furthermore, the framework formed the base for interview questions. Both in theoretical and the empirical part of the study it was found that today, in strategic assessment of the external business environment, besides setting focus on the current situation, it is important to concentrate also on the future. The traditional analysis frameworks offer a good starting point for collecting relevant data but they do not encourage conducting a deeper analysis. By adding characteristics from scenario planning to these more traditional tools, a new analysis framework was created, which ensured the more comprehensive analysis. By understanding the interconnections between discovered phenomena and changes, and by recognizing uncertainties, the user is helped to reflect the environment more profoundly. The contributions of the study are both theoretical and managerial. A new analysis framework strives to answer to the current needs for strategic assessment of external business environment and the framework was tested in the context of European pet food sector. When it comes to managerial contributions, the importance lies in understanding the future. Managers must take future into account and understand that future includes various possibilities which all must be reflected
Resumo:
The microenvironment within the tumor plays a central role in cellular signaling. Rapidly proliferating cancer cells need building blocks for structures as well as nutrients and oxygen for energy production. In normal tissue, the vasculature effectively transports oxygen, nutrient and waste products, and maintains physiological pH. Within a tumor however, the vasculature is rarely sufficient for the needs of tumor cells. This causes the tumor to suffer from lack of oxygen (hypoxia) and nutrients as well as acidification, as the glycolytic end product lactate is accumulated. Cancer cells harbor mutations enabling survival in the rough microenvironment. One of the best characterized mutations is the inactivation of the von Hippel-Lindau protein (pVHL) in clear cell renal cell carcinoma (ccRCC). Inactivation causes constitutive activation of hypoxia-inducible factor HIF which is an important survival factor regulating glycolysis, neovascularization and apoptosis. HIFs are normally regulated by HIF prolyl hydroxylases (PHDs), which in the presence of oxygen target HIF α-subunit to ubiquitination by pVHL and degradation by proteasomes. In my thesis work, I studied the role of PHDs in the survival of carcinoma cells in hypoxia. My work revealed an essential role of PHD1 and PHD3 in cell cycle regulation through two cyclin-dependent kinase inhibitors (CKIs) p21 and p27. Depletion of PHD1 or PHD3 caused a cell cycle arrest and subjected the carcinoma cells to stress and impaired the survival.
Resumo:
Perovskite manganite compounds, Lai-xDxMnOs (D-divalent alkaline earth Ca, Sr or Ba), whose electrical and magnetic properties were first investigated nearly a half century ago, have attracted a great deal of attention due to their rich phase diagram. From the point of view of designing a future application, the strong pressure dependence of the resistivity and the accompanying effects in thin films have potential for application in pressure sensing and electronic devices. In this study we report our experimental investigations of pressure dependence of the resistivity of Lao.siSvo^iQMnOs and Lai-xSvxMnOs (LSMO) epitaxial films with x= 0.15, 0.20, 0.25, 0.30, 0.35, on SrTiOs substrates.