840 resultados para sensitized photodegradation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Behavioral sensitization is defined as the subsequent augmentation of the locomotor response to a drug following repeated administrations of the drug. It is believed to occur due to alterations in the motive circuit in the brain by stressors, central nervous system stimulants, and similar stimuli. The motive circuit (or mesocorticolimbic system) consists of several interconnected nuclei that determine the behavioral response to significant biological stimuli. A final target of the mesocorticolimbic system is the nucleus accumbens (NAc), which is a key structure linking motivation and action. In particular, the dopaminergic innervations of the Nac are considered to be essential in regulating motivated states of behavior such as goal-directed actions, stimulus-reward associations and reinforcement by addictive substances. Therefore, the objective of this study was to investigate the role of dopaminergic afferents of the NAc in the behavioral sensitization elicited by chronic treatment with methylphenidate (MPD), a psychostimulant that is widely used to treat attention deficit hyperactivity disorder. The dopaminergic afferents can be selectively destroyed using catecholamine neurotoxin 6-hydroxydopamine (6-OHDA). In order to determine whether destruction of dopaminergic afferents of the NAc prevents sensitization, I compared locomotor activity in rats that had received infusions of 6-hydroxydopamine (6-OHDA) into the NAc with that of control and sham-operated animals. All groups of rats received six days of single daily MPD injections after measuring their pre and post surgery locomotor baseline. Following the consecutive MPD injections, there was a washout period of 4 days, where no injections were given. Then, a rechallenge injection of MPD was given. Behavioral responses after repeated MPD were compared to those after acute MPD to assess behavioral sensitization. Expression of sensitization to MPD was not prevented by 6-OHDA infusion into the NAc. Moreover, two distinct responses were seen to the acute injection of MPD: one group of rats had essentially no response to acute MPD, while the other had an augmented (‘sensitized’-like) acute response. Among rats with 6-OHDA infusions, the animals with diminished acute response to MPD had intact behavioral sensitization to repeated MPD, while the animals with increased acute response to MPD did not exhibit further sensitization to it. This suggests that the acute and chronic effects of MPD have distinct underlying neural circuitries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the western countries. The interaction between CLL cells and the bone marrow stromal environment is thought to play a major role in promoting the leukemia cell survival and drug resistance. My dissertation works proved a novel biochemical mechanism by which the bone marrow stromal cells exert a profound influence on the redox status of primary CLL cells and enhance their ability to sustain oxidative stress and drug treatment. Fresh leukemia cells isolated from the peripheral blood of CLL patients exhibited two major redox alterations when they were cultured alone: a significant decrease in cellular glutathione (GSH) and an increase in basal ROS levels. However, when cultured in the presence of bone marrow stromal cells, CLL cells restored their redox balance with an increased synthesis of GSH, a decrease in spontaneous apoptosis, and an improved cell survival. Further study showed that CLL cells were under intrinsic ROS stress and highly dependent on GSH for survival, and that the bone marrow stromal cells promoted GSH synthesis in CLL cells through a novel biochemical mechanism. Cysteine is a limiting substrate for GSH synthesis and is chemically unstable. Cells normally obtain cysteine by uptaking the more stable and abundant precursor cystine from the tissue environment and convert it to cysteine intracellularly. I showed that CLL cells had limited ability to take up extracellular cystine for GSH synthesis due to their low expression of the transporter Xc-, but had normal ability to uptake cysteine. In the co-culture system, the bone marrow stromal cells effectively took up cystine and reduced it to cysteine for secretion into the tissue microenvironment to be taken up by CLL cells for GSH synthesis. The elevated GSH in CLL cells in the presence of bone marrow stromal cells significantly protected the leukemia cells from stress-induced apoptosis, and rendered them resistant to standard therapeutic agents such as fludarabine and oxaliplatin. Importantly, disabling of this protective mechanism by depletion of cellular GSH using a pharmacological approach potently sensitized CLL cells to drug treatment, and effectively enhanced the cytotoxic action of fludarabine and oxaliplatin against CLL in the presence of stromal cells. This study reveals a key biochemical mechanism of leukemia-stromal cells interaction, and identifies a new therapeutic strategy to overcome drug resistance in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The recreational use of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) among adolescents and young adults has become increasingly prevalent in recent years. While evidence suggests that the long-term consequences of MDMA use include neurodegeneration to serotonergic and, possibly, dopaminergic pathways, little is known about susceptibility, such as behavioral sensitization, to MDMA. METHODS: The objectives of this study were to examine the dose-response characteristics of acute and chronic MDMA administration in rats and to determine whether MDMA elicits behavioral sensitization and whether it cross-sensitizes with amphetamine and methylphenidate. Adult male Sprague-Dawley rats were randomly divided into three MDMA dosage groups (2.5 mg/kg, 5.0 mg/kg, and 10.0 mg/kg) and a saline control group (N = 9/group). All three MDMA groups were treated for six consecutive days, followed by a 5-day washout, and subsequently re-challenged with their respective doses of MDMA (day 13). Rats were then given an additional 25-day washout period, and re-challenged (day 38) with similar MDMA doses as before followed by either 0.6 mg/kg amphetamine or 2.5 mg/kg methylphenidate on the next day (day 39). Open-field locomotor activity was recorded using a computerized automated activity monitoring system. RESULTS: Acute injection of 2.5 mg/kg MDMA showed no significant difference in locomotor activity from rats given saline (control group), while animals receiving acute 5.0 mg/kg or 10.0 mg/kg MDMA showed significant increases in locomotor activity. Rats treated chronically with 5.0 mg/kg and 10.0 mg/kg MDMA doses exhibited an augmented response, i.e., behavioral sensitization, on experimental day 13 in at least one locomotor index. On experimental day 38, all three MDMA groups demonstrated sensitization to MDMA in at least one locomotor index. Amphetamine and methylphenidate administration to MDMA-sensitized animals did not elicit any significant change in locomotor activity compared to control animals. CONCLUSION: MDMA sensitized to its own locomotor activating effects but did not elicit any cross-sensitization with amphetamine or methylphenidate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pancreatic ductal adenocarcinoma (PDA) is one of the most aggressive malignancies with less than 5% of five year survival rate. New molecular markers and new therapeutic targets are urgently needed for patients with PDA. Oncogenic receptor tyrosine kinase Axl has been reported to be overexpressed in many types of human malignancies, including diffuse glioma, melanoma, osteosarcoma, and carcinomas of lung, colon, prostate, breast, ovary, esophagus, stomach, and kidney. However, the expression and functions of Axl in PDA are unclear. We hypothesized that Axl contributes to the development and progression of PDA. We examined Axl expression in 54 human PDA samples and their paired benign pancreatic tissue by immunohistochemistry, we found that Axl was overexpressed in 70% of stage II PDAs, but only 22% of benign ducts (P=0.0001). Axl overexpression was associated with higher frequencies of distant metastasis and was an independent prognostic factor for both poor overall and recurrence-free survivals in patients with stage II PDA (p = 0.03 and 0.04). Axl silencing by shRNA in pancreatic cancer cell lines, panc-28 and Panc-1, decreased tumor cell migration and invasion and sensitized PDA cells to apoptosis stimuli such as γ-irradiation and serum starvation. In addition, we found that Axl-mediated Akt and NF-κB activation and up regulation of MMP2 were involved in the invasion, migration and survival of PDA cells. Thus, we demonstrate that Axl plays an important role in the development and progression of PDA. Targeting Axl signaling pathway may represent a new approach for the treatment of PDA. To understand the molecular mechanisms of Axl overexpression in PDA, we found that Axl expression was down-regulated by hematopoietic progenitor kinase 1 (HPK1), a newly identified tumor suppressor in PDA. HPK1 is lost in over 95% of PDAs. Restoration of HPK1 in PDA cells down-regulated Axl expression. HPK1-mediated Axl degradation was inhibited by leupeptin, baflomycin A1, and monensin, suggesting that HPK1-mediated Axl degradation was through endocytosis-lysosome pathway. HPK1 interacted with and phosphorylated dynamin, a critical component of endocytosis pathway. Overexpression of dominant negative form of dynamin blocked the HPK1-mediated Axl degradation. Therefore we concluded that HPK1-mediated Axl degradation was through endocytosis-lysosome pathway and loss of HPK1 expression may contribute to Axl overexpression in PDAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to determine the effects of the histone deacetylase inhibitor, MS-275, on the Fas signaling pathway and susceptibility of osteosarcoma (OS) to Fas ligand (FasL)-induced cell death. OS metastasizes almost exclusively to the lungs. We have shown that Fas expression in OS cells is inversely correlated with their metastatic potential. Fas+ cells are rapidly eliminated when they enter the lungs via interaction with FasL, which is constitutively expressed in the lungs. Fas- OS cells escape this FasL-induced apoptosis and survive in the lung microenvironment. Moreover, upregulation of Fas in established OS lung metastases results in tumor regression. Therefore, agents that upregulate Fas expression or activate the Fas signaling pathway may have therapeutic potential. Treatment of Fas- metastatic OS cell lines with 2 μM MS-275 sensitized cells to FasL-induced cell death in vitro. We found that MS-275 did not alter the expression of Fas on the cell surface; rather it resulted in increased levels of Fas within the membrane lipid rafts, as demonstrated by an increase in Fas expression in detergent insoluble lipid raft fractions. We further demonstrated that following MS-275 treatment, Fas colocalized with GM1+ lipid rafts and that there was a decrease in c-FLIP (cellular FLICE-inhibitory protein) mRNA and protein. Downregulation of c-FLIP correlated with caspase activation and apoptosis induction. Transfection of cells with shRNA to c-FLIP also resulted in the localization of Fas to lipid rafts. These studies indicate that MS-275 sensitizes OS cells to FasL by upregulating the expression of Fas in membrane lipid rafts, which correlated with the downregulation of c-FLIP. Treatment of nu/nu-mice with established OS lung metastases with oral MS-275 resulted in increased apoptosis, a significant inhibition of c-FLIP expression in tumors and tumor regression. Histopathological examination of mice showed no significant organ toxicity. Overall, these results suggest that the mechanism by which MS-275 sensitizes OS cells and lung metastases to FasL-induced cell death may be by a reduction in the expression of c-FLIP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultraviolet (UV) radiation produces immunological alterations in both humans and animals that include a decrease in the delayed type hypersensitivity (DTH) response to complex antigens, and to the induction of the suppressor T cell pathway. Cell-mediated immunity of the type that is altered by UV radiation has been shown to be important in host resistance against microorganisms. My dissertation addresses questions concerning the effects of UV radiation on the pathogenesis of opportunistic fungal pathogens such as Candida albicans.^ The (DTH) response of C3H mice exposed to ultraviolet (UV) radiation before (afferent arm of DTH) or after (efferent arm of DTH) infection with Candida albicans was markedly and systemically suppressed. Although suppression of both the afferent and efferent phases of DTH were caused by similar wavebands within the ultraviolet region, the dose of UV radiation that suppressed the efferent arm of DTH was 10-fold higher than the dose that suppressed the afferent arm of the DTH reaction.^ The DTH response of C57BL/6 mice was also suppressed by UV radiation; however the suppression was accomplished by exposure to significantly lower doses UV radiation compared to C3H mice. In C57BL/6 mice, the dose of UV radiation that suppressed the afferent phase of DTH was 5-fold higher than the dose that suppressed the efferent phase.^ Exposure of C3H mice to UV radiation before sensitization induced splenic suppressor T cells that upon transfer to normal recipients, impaired the induction of DTH to Candida. In contrast, the suppression caused by UV irradiation of mice after sensitization was not transferable. Spleen cells from sensitized mice exhibited altered homing patterns in animals that were exposed to UV radiation shortly before receiving cells, suggesting that UV-induced suppression of the efferent arm of DTH could result from an alteration in the distribution of effector cells.^ UV radiation decreased the survival of Candida-infected mice; however, no correlation was found between suppression of the DTH response and the course of lethal infection. This suggested that DTH was not protective against lethal disease with this organism. UV radiation also changed the persistence of the organism in the internal organs. UV-irradiated, infected animals had increased numbers of Candida in their kidneys compared to non-irradiated mice. Sensitization prior to UV irradiation aided clearance of the organism from the kidneys of UV-irradiated mice.^ These data show that UV radiation suppresses cell-mediated immunity to Candida albicans in mice and increases mortality of Candida-infected mice. Moreover, the data suggest that an increase in environmental UV radiation could increase the severity of pathogenic infections. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most tissue-invasive parasitic helminths prime for type 1 hypersensitivity or anaphylaxis during some phase of their life cycles. A prototype in this regard is the nematode Trichinella spiralis. Blood protozoa capable of tissue invasion, such as Trypanosoma brucei, might also be expected to prime for the expression of anaphylaxis. However, this response is usually absent in protozoal infections. The hypothesis tested was that failure of hosts infected with T.brucei to express anaphylaxis is related to this parasite's ability to selectively down-regulate immunoglobulin E (IgE) production, and not to an innate lack of allergenicity on the part of T.brucei-derived antigens. This hypothesis was tested by studying in the intestine of rats, antigen-induced Cl$\sp-$ secretion, which results from a local anaphylactic response mediated by IgE and mucosal mast cells. The Cl$\sp-$ secretory response can be primed either by infection with T.spiralis or by the parenteral administration of antigen. Anaphylaxis-induced Cl$\sp-$ secretion is expressed in vitro, and can be quantified electrophysiologically, as a change in transmural short-circuit current when sensitized intestine is mounted in Ussing chambers and challenged with the sensitizing antigen.^ Rats injected parenterally with trypanosome antigen elicited intestinal anaphylaxis in response to antigenic challenge. In contrast, the intestine of rats infected with T.brucei failed to respond to challenge with trypanosome antigen. Infection with T.brucei also suppressed antigen-induced Cl$\sp-$ secretion in rats sensitized and challenged with various antigens, including T.spiralis antigen. However, T.brucei infection did not inhibit the anaphylactic response in rats concomitantly infected with T.spiralis. Relative to the anaphylactic mediators, T.brucei infection blocked production of IgE in rats parenterally injected with antigen but not in T.spiralis-infected hosts. Also, the mucosal mastocytosis normally associated with trichinosis was unaffected by the trypanosome infection. These results support the conclusion that the failure to express anaphylaxis-mediated Cl$\sp-$ secretion in T.brucei infected rats, is due to this protozoan's ability to inhibit IgE production and not to the lack of allergenicity of trypanosome antigens. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inhibition of local host immune reactions is one mechanism contributing to tumor progression. To determine if alterations in local immune functioning occur during colon carcinogenesis, a model mucosal immune response, type I hypersensitivity against the intestinal parasite Trichinella spiralis, was first characterized in normal mice and then examined during experimental colon carcinogenesis. Segments of sensitized colon mounted in Ussing chambers and challenged with T. spiralis-derived antigen resulted in a rise in short-circuit current ($\rm\Delta I\sb{sc}$) that was antigen-specific and inhibited by furosemide, implicating epithelial Cl$\sp-$ secretion as the ionic mechanism. The immune-regulated Cl$\sp-$ secretion by colonic epithelial cells required the presence of mast cells with surface IgE. Inhibition of potential anaphylactic mediators with various pharmacological agents in vitro implicated prostaglandins and leukotrienes as the principal mediators of the antigen-induced $\rm\Delta I\sb{sc}$, with 5-hydroxytryptamine also playing a role. Distal colon from immune mice fed an aspirin-containing diet (800 mg/kg powdered diet) ad libitum for 6 wk had a decreased response to antigen, confirming the major role of prostaglandins in generating the colonic I$\sb{\rm sc}$. To determine the effects of early stages of colon carcinogenesis on this mucosal immune response, mice were immunized with T. spiralis 1 day after or 8 wk prior to the first of 6 weekly injections of the procarcinogen 1,2-dimethylhydrazine (DMH). Responsiveness to antigenic challenge was suppressed in the distal colon 4-6 wk after the final injection of DMH. One injection of DMH was not sufficient to inhibit antigen responsiveness. The colonic epithelium remained sensitive to direct stimulation by exogenous Cl$\sp-$ secretagogues. Decreased antigen-induced $\rm\Delta I\sb{sc}$ in the distal colon was not due to systemic immune suppression by DMH, as the proximal colon and jejunum maintained responsiveness to antigen. Also, rejection of a secondary T. spiralis infection from the small intestine was not altered. Tumors eventually developed 25-30 wk after the final injection of DMH only in the distal portions of the colon. These results suggest that early stages of DMH-induced colon carcinogenesis manipulate the microenvironment such that mucosal immune function, as measured by immune-regulated Cl$\sp-$ secretion, is suppressed in the distal colon, but not in other regions of the gut. Future elucidation of the mechanisms by which this localized inhibition of immune-mediated ion transport occurs may provide possible clues to the microenvironmental changes necessary for tumor progression in the distal colon. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have shown that short-term sensitization of the Aplysia siphon-withdrawal reflex circuit results in multiple sites of change in synaptic efficacy. In this dissertation I have used a realistic modeling approach (using an integrate-and-fire scheme), in conjunction with electrophysiological experiments, to evaluate the contribution of each site of plasticity to the sensitized response.^ This dissertation contains a detailed description of methodology for the construction of the model circuit, consisting of the LFS motor neurons and ten interneurons known to convey excitatory input to them. The model replicates closely the natural motor neuron firing response to a brief tactile stimulus.^ The various circuit elements have different roles for producing circuit output. For example, the sensory connections onto the motor neuron are important for the production of the phasic response, while the polysynaptic interneuronal connections are important for producing the tonic response.^ The multiple sites of plasticity that produce changes in circuit output also have specialized roles. Presynaptic facilitation of the sensory neuron to LFS connection enhances only the phasic component of the motor neuron firing response. The sensory neuron to interneuron connections primarily enhance the tonic component of the motor neuron firing response. Also, the L29 posttetanic potentiation and the L30 presynaptic inhibition primarily enhance the tonic component of the motor neuron firing response. Finally, the information content at the various sites of plasticity can shift with changes in stimulus intensity. This suggests that while the sites of plasticity encoding memory are fixed, the information content at these sites can be dynamic, shifting in anatomical location with changes in the intensity of the test stimulus.^ These sites of plasticity also produce specific changes in the behavioral response. Sensory-LFS plasticity selectively increases the amplitude of the behavioral response, and has no effect on the duration of the behavioral response. Interneuronal plasticity (L29 and L30) affects both the amplitude and duration of the behavioral response. Other sensory plasticity also affect both the amplitude and duration of the behavioral response, presumably by increasing the recruitment of the interneurons, which provide all of the effect on duration of the behavioral response. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myogenin is a muscle-specific transcription factor essential for skeletal muscle differentiation. A severe reduction in the number of fused myotubes is seen in myogenin-null mice, and the expression of genes characteristic of differentiated skeletal muscle is reduced. Additionally, sternebrae defects are seen in myogenin-null mice, a secondary defect in the sternal cartilage precursors. Very little is known about the quantitative requirement for myogenin in muscle differentiation and thoracic skeletal development in vivo. In this thesis I describe experiments utilizing a mouse line harboring a hypomorphic allele of myogenin, generated by gene targeting techniques in embryonic stem cells. The nature of the hypomorphism was due to lowered levels of myogenin from this allele. In embryos homozygous for the hypomorphic allele, normal sternum formation and extensive muscle differentiation was observed. However, muscle hypoplasia and reduced muscle-specific gene expression were apparent in these embryos, and the mice were not viable after birth. These results suggest skeletal muscle differentiation is highly sensitive to the absolute amounts of myogenin, and reveal distinct threshold requirements for myogenin in skeletal muscle differentiation, sternum formation, and viability in vivo. The hypomorphic allele was utilized as a genetically sensitized background to identify other components of myogenin-mediated processes. Using a candidate gene approach I crossed null mutations in MEF2C and MRF4 into the hypomorphic background and examined whether these mutations affected muscle differentiation and skeleton formation in the myogenin hypomorph. Although MEF2C mutation did not affect any phenotypes seen in the hypomorphic background, MRF4 was observed to be an essential component of myogenin-mediated processes of thoracic skeletal development. Additionally, the hypomorphic allele was very sensitive to genetic effects, suggesting the existence of mappable genetic modifiers of the hypomorphic allele of myogenin. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrophysiological studies were conducted to test the hypothesis that alterations in intestinal epithelial function are associated with immunological responses directed against the enteric parasite, Trichinella spirals. Trichinella antigens were used to challenge sensitized jejunum from infected guinea pigs while monitoring ion transport properties of the tissue in an Ussing-type chamber. The addition of antigen caused increases in transepithelial PD and I(,sc) that were rapidly induced, peaked at 1.5 to 2 min after antigen-challenge, and lasted 10 to 20 min thereafter. The increase in I(,sc) ((DELTA)I(,sc)) varied in a dose-dependent manner until a maximal increase of 40 (mu)A/cm('2) was obtained by the addition of 13 (mu)g of antigenic protein per ml of serosal fluid in the Ussing chamber. Trichinella antigen did not elicit alterations in either PD or I(,sc) of nonimmune tissue. Jejunal tissue from guinea pigs immunized with ovalbumin according to a protocol that stimulated homocytotropic antibody production responded electrically to challenge with ovalbumin but not trichinella antigen. Jejunal tissue which was passively sensitized with immune serum having a passive cutaneous anaphylaxis (PCA) titer of 32 for both IgE and IgG(,1) anti-trichinella anti-bodies responded electrically after exposure to trichinella antigen. Heat treatment of immune serum abolished the anti-trichinella IgE titer as determined by the PCA test but did not decrease either the electrical response of passively sensitized tissue to antigen or the anaphylactically mediated intestinal smooth muscle contractile response to antigen in the classical Schultz-Dale assay. These results strongly support the hypothesis that immunological responses directed against Trichinella Spiralis alter intestinal epithelial function and suggest that immediate hypersensitivity is the immunological basis of the response.^ Additional studies were performed to test the hypothesis that histamine and prostaglandins that are released from mucosal mast cells during IgE or IgG(,1) - antigen stimulated degranulation mediate electrophysiological changes in the intestinal epithelium that are reflective of Cl('-) secretion and mediated intracellularly by cAMP. Pharmacological and biochemical studies were performed to determine the physiological messengers and ionic basis of electrical alterations in small intestinal epithelium of the guinea pig during in vitro anaphylaxis. Results suggest that Cl('-) secretion mediated, in part, by cAMP contributes to antigen-induced jejunal ion transport changes and that histamine and prostaglandins are involved in eliciting epithelial responses. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background/Aims: Ceramide kinase (CerK) catalyzes the generation of the sphingolipid ceramide-1-phosphate (C1P) which regulates various cellular functions including cell growth and death, and inflammation. Here, we used a novel catalytic inhibitor of CerK, NVP-231, and CerK knockout cells to investigate the contribution of CerK to proliferation and inflammation in renal mesangial cells and fibroblasts. Methods: Cells were treated with NVP-231 and [3H]-thymidine incorporation into DNA, [3H]-arachidonic acid release, prostaglandin E2 (PGE2) synthesis, cell cycle distribution, and apoptosis were determined. Results: Treatment of rat mesangial cells and mouse renal fibroblasts with NVP-231 decreased DNA synthesis, but not of agonist-stimulated arachidonic acid release or PGE2 synthesis. Similarly, proliferation but not arachidonic acid release or PGE2 synthesis was reduced in CERK knockout renal fibroblasts. The anti-proliferative effect of NVP-231 on mesangial cells was due to M phase arrest as determined using the mitosis markers phospho-histone H3, cdc2 and polo-like kinase-1, and induction of apoptosis. Moreover, loss of CerK sensitized cells towards stress-induced apoptosis. Conclusions: Our data demonstrate that CerK induces proliferation but not PGE2 formation of renal mesangial cells and fibroblasts, and suggest that targeted CerK inhibition has potential for treating mesangioproliferative kidney diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Purpose Ceramide kinase (CerK) catalyzes the generation of ceramide-1-phosphate which may regulate various cellular functions, including inflammatory reactions and cell growth. Here, we studied the effect of a recently developed CerK inhibitor, NVP-231, on cancer cell proliferation and viability and investigated the role of cell cycle regulators implicated in these responses. Experimental Approach The breast and lung cancer cell lines MCF-7 and NCI-H358 were treated with increasing concentrations of NVP-231 and DNA synthesis, colony formation and cell death were determined. Flow cytometry was performed to analyse cell cycle distribution of cells and Western blot analysis was used to detect changes in cell cycle regulator expression and activation. Key Results In both cell lines, NVP-231 concentration-dependently reduced cell viability, DNA synthesis and colony formation. Moreover it induced apoptosis, as measured by increased DNA fragmentation and caspase-3 and caspase-9 cleavage. Cell cycle analysis revealed that NVP-231 decreased the number of cells in S phase and induced M phase arrest with an increased mitotic index, as determined by increased histone H3 phosphorylation. The effect on the cell cycle was even more pronounced when NVP-231 treatment was combined with staurosporine. Finally, overexpression of CerK protected, whereas down-regulation of CerK with siRNA sensitized, cells for staurosporine-induced apoptosis. Conclusions and Implications Our data demonstrate for the first time a crucial role for CerK in the M phase control in cancer cells and suggest its targeted inhibition, using drugs such as NVP-231, in combination with conventional pro-apoptotic chemotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A lack of reliably informative biomarkers to distinguish indolent and lethal prostate cancer is one reason this disease is overtreated. miR-221 has been suggested as a biomarker in high-risk prostate cancer, but there is insufficient evidence of its potential utility. Here we report that miR-221 is an independent predictor for cancer-related death, extending and validating earlier findings. By mechanistic investigations we showed that miR-221 regulates cell growth, invasiveness, and apoptosis in prostate cancer at least partially via STAT1/STAT3-mediated activation of the JAK/STAT signaling pathway. miR-221 directly inhibits the expression of SOCS3 and IRF2, two oncogenes that negatively regulate this signaling pathway. miR-221 expression sensitized prostate cancer cells for IFN-γ-mediated growth inhibition. Our findings suggest that miR-221 offers a novel prognostic biomarker and therapeutic target in high-risk prostate cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Exposure to food allergens through a disrupted skin barrier has been recognized as a potential factor in the increasing prevalence of food allergy. OBJECTIVE We sought to test the immunologic mechanisms by which epicutaneous sensitization to food allergens predisposes to intestinal food allergy. METHODS Mice were epicutaneously sensitized with ovalbumin or peanut on an atopic dermatitis-like skin lesion, followed by intragastric antigen challenge. Antigen-specific serum IgE levels and T(H)2 cytokine responses were measured by ELISA. Expression of type 2 cytokines and mast cell proteases in the intestine were measured by using real-time PCR. Accumulation of basophils in the skin and mast cells in the intestine was examined by using flow cytometry. In vivo basophil depletion was achieved by using diphtheria toxin treatment of Baso-DTR mice. For cell-transfer studies, the basophil population was expanded in vivo by means of hydrodynamic tail vein injection of thymic stromal lymphopoietin (TSLP) cDNA plasmid. RESULTS Sensitization to food allergens through an atopic dermatitis-like skin lesion is associated with an expansion of TSLP-elicited basophils in the skin that promote antigen-specific T(H)2 cytokine responses, increased antigen-specific serum IgE levels, and accumulation of mast cells in the intestine, promoting the development of intestinal food allergy. Critically, disruption of TSLP responses or depletion of basophils reduced the susceptibility to intestinal food allergy, whereas transfer of TSLP-elicited basophils into intact skin promoted disease. CONCLUSION Epicutaneous sensitization on a disrupted skin barrier is associated with accumulation of TSLP-elicited basophils, which are necessary and sufficient to promote antigen-induced intestinal food allergy.