914 resultados para semi-physical simulation
Resumo:
Two experiments involving 87 undergraduates examined whether happiness produces increased performance on a physical task and tested whether self-efficacy mediated the results. When mood inductions covered the full range from happy to sad, mood influenced physical performance; however, evidence regarding self-efficacy was equivocal. Efficacy for the performed task was unaffected by mood, although it remained a good predictor of performance. Since mood altered efficacy for a nonperformed but more familiar task, inconsistent efficacy results could reflect task differences. Findings offer prospects for the use of mood inductions in practical sporting situations.
Resumo:
A diagnosis of cancer represents a significant crisis for the child and their family. As the treatment for childhood cancer has improved dramatically over the past three decades, most children diagnosed with cancer today survive this illness. However, it is still an illness which severely disrupts the lifestyle and typical functioning of the family unit. Most treatments for cancer involve lengthy hospital stays, the endurance of painful procedures and harsh side effects. Research has confirmed that to manage and adapt to such a crisis, families must undertake measures which assist their adjustment. Variables such as level of family support, quality of parents’ marital relationship, coping of other family members, lack of other concurrent stresses and open communication within the family have been identified as influences on how well families adjust to a diagnosis of childhood cancer. Theoretical frameworks such as the Resiliency Model of Family Adjustment and Adaptation (McCubbin and McCubbin, 1993, 1996) and the Stress and Coping Model by Lazarus and Folkman (1984) have been used to explain how families and individuals adapt to crises or adverse circumstances. Developmental theories have also been posed to account for how children come to understand and learn about the concept of illness. However more descriptive information about how families and children in particular, experience and manage a diagnosis of cancer is still needed. There are still many unanswered questions surrounding how a child adapts to, understands and makes meaning from having a life-threatening illness. As a result, developing an understanding of the impact that such a serious illness has on the child and their family is crucial. A new approach to examining childhood illness such as cancer is currently underway which allows for a greater understanding of the experience of childhood cancer to be achieved. This new approach invites a phenomenological method to investigate the perspectives of those affected by childhood cancer. In the current study 9 families in which there was a diagnosis of childhood cancer were interviewed twice over a 12 month period. Using the qualitative methodology of Interpretative Phenomenological Analysis (IPA) a semi-structured interview was used to explicate the experience of childhood cancer from both the parent and child’s perspectives. A number of quantitative measures were also administered to gather specific information on the demographics of the sample population. The results of this study revealed a number of pertinent areas which need to be considered when treating such families. More importantly experiences were explicated which revealed vital phenomena that needs to be added to extend current theoretical frameworks. Parents identified the time of the diagnosis as the hardest part of their entire experience. Parents experienced an internal struggle when they were forced to come to the realization that they were not able to help their child get well. Families demonstrated an enormous ability to develop a new lifestyle which accommodated the needs of the sick child, as the sick child became the focus of their lives. Regarding the children, many of them accepted their diagnosis without complaint or question, and they were able to recognise and appreciate the support they received. Physical pain was definitely a component of the children’s experience however the emotional strain of loss of peer contact seemed just as severe. Changes over time were also noted as both parental and child experiences were often pertinent to the stage of treatment the child had reached. The approach used in this study allowed for rich and intimate detail about a sensitive issue to be revealed. Such an approach also allowed for the experience of childhood cancer on parents and the children to be more fully realised. Only now can a comprehensive and sensitive medical and psychosocial approach to the child and family be developed. For example, families may benefit from extra support at the time of diagnosis as this was identified as one of the most difficult periods. Parents may also require counselling support in coming to terms with their lack of ability to help their child heal. Given the ease at which children accepted their diagnosis, we need to question whether children are more receptive to adversity. Yet the emotional struggle children battled as a result of their illness also needs to be addressed.
Resumo:
Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (N mm− 1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived from a single 2D radiographic image. This ex-vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD.
Resumo:
Purpose Increased physical activity in colorectal cancer patients is related to improved recurrence free and overall survival. Psychological distress after cancer may place patients at risk of reduced physical activity; but paradoxically also act as a motivator for positive lifestyle change. The relationship between psychological distress and physical activity after cancer over time has not been described. Methods A prospective survey of 1966 (57% response) colorectal cancer survivors assessed the psychological distress variables of anxiety, depression, somatisation, cancer threat appraisal as predictors of physical activity five, 12, 24 and 36 months post-diagnosis 978 respondents had valid data for all time points. Results Higher somatisation was associated with greater physical inactivity (Relative risk ratio (RRR) =1.12; 95% CI=[1.1, 1.2]) and insufficient physical activity (RRR=1.05; [0.90, 1.0]). Respondents with a more positive appraisal of their cancer were significantly (p=0.031) less likely to be inactive (RRR=0.95; [0.90, 1.0]) or insufficiently active (RRR=0.96). Fatigued and obese respondents and current smokers were more inactive. Respondents whose somatisation increased between two time periods were less likely to increase their physical activity over the same period (p<0.001). Respondents with higher anxiety at one time period were less likely to have increased their activity at the next assessment (p=0.004). There was no association between depression and physical activity. Conclusions Cancer survivors who experience somatisation and anxiety are at greater risk of physical inactivity. The lack of a clear relationship between higher psychological distress and increasing physical activity argues against distress as a motivator to exercise in these patients.
Resumo:
In this paper, the numerical simulation of the 3D seepage flow with fractional derivatives in porous media is considered under two special cases: non-continued seepage flow in uniform media (NCSFUM) and continued seepage flow in non-uniform media (CSF-NUM). A fractional alternating direction implicit scheme (FADIS) for the NCSF-UM and a modified Douglas scheme (MDS) for the CSF-NUM are proposed. The stability, consistency and convergence of both FADIS and MDS in a bounded domain are discussed. A method for improving the speed of convergence by Richardson extrapolation for the MDS is also presented. Finally, numerical results are presented to support our theoretical analysis.
Resumo:
Established Monte Carlo user codes BEAMnrc and DOSXYZnrc permit the accurate and straightforward simulation of radiotherapy experiments and treatments delivered from multiple beam angles. However, when an electronic portal imaging detector (EPID) is included in these simulations, treatment delivery from non-zero beam angles becomes problematic. This study introduces CTCombine, a purpose-built code for rotating selected CT data volumes, converting CT numbers to mass densities, combining the results with model EPIDs and writing output in a form which can easily be read and used by the dose calculation code DOSXYZnrc. The geometric and dosimetric accuracy of CTCombine’s output has been assessed by simulating simple and complex treatments applied to a rotated planar phantom and a rotated humanoid phantom and comparing the resulting virtual EPID images with the images acquired using experimental measurements and independent simulations of equivalent phantoms. It is expected that CTCombine will be useful for Monte Carlo studies of EPID dosimetry as well as other EPID imaging applications.
Resumo:
Background: Given escalating rates of chronic disease, broad-reach and cost-effective interventions to increase physical activity and improve dietary intake are needed. The cost-effectiveness of a Telephone Counselling intervention to improve physical activity and diet, targeting adults with established chronic diseases in a low socio-economic area of a major Australian city was examined. Methodology/Principal Findings: A cost-effectiveness modelling study using data collected between February 2005 and November 2007 from a cluster-randomised trial that compared Telephone Counselling with a “Usual Care” (brief intervention) alternative. Economic outcomes were assessed using a state-transition Markov model, which predicted the progress of participants through five health states relating to physical activity and dietary improvement, for ten years after recruitment. The costs and health benefits of Telephone Counselling, Usual Care and an existing practice (Real Control) group were compared. Telephone Counselling compared to Usual Care was not cost-effective ($78,489 per quality adjusted life year gained). However, the Usual Care group did not represent existing practice and is not a useful comparator for decision making. Comparing Telephone Counselling outcomes to existing practice (Real Control), the intervention was found to be cost-effective ($29,375 per quality adjusted life year gained). Usual Care (brief intervention) compared to existing practice (Real Control) was also cost-effective ($12,153 per quality adjusted life year gained). Conclusions/Significance: This modelling study shows that a decision to adopt a Telephone Counselling program over existing practice (Real Control) is likely to be cost-effective. Choosing the ‘Usual Care’ brief intervention over existing practice (Real Control) shows a lower cost per quality adjusted life year, but the lack of supporting evidence for efficacy or sustainability is an important consideration for decision makers. The economics of behavioural approaches to improving health must be made explicit if decision makers are to be convinced that allocating resources toward such programs is worthwhile.
Resumo:
Scoliosis is a three-dimensional spinal deformity which requires surgical correction in progressive cases. In order to optimize correction and avoid complications following scoliosis surgery, patient-specific finite element models (FEM) are being developed and validated by our group. In this paper, the modeling methodology is described and two clinically relevant load cases are simulated for a single patient. Firstly, a pre-operative patient flexibility assessment, the fulcrum bending radiograph, is simulated to assess the model's ability to represent spine flexibility. Secondly, intra-operative forces during single rod anterior correction are simulated. Clinically, the patient had an initial Cobb angle of 44 degrees, which reduced to 26 degrees during fulcrum bending. Surgically, the coronal deformity corrected to 14 degrees. The simulated initial Cobb angle was 40 degrees, which reduced to 23 degrees following the fulcrum bending load case. The simulated surgical procedure corrected the coronal deformity to 14 degrees. The computed results for the patient-specific FEM are within the accepted clinical Cobb measuring error of 5 degrees, suggested that this modeling methodology is capable of capturing the biomechanical behaviour of a scoliotic human spine during anterior corrective surgery.
Resumo:
Lamb waves propagation in composite materials has been studied extensively since it was first observed in 1982. In this paper, we show a procedure to simulate the propagation of Lamb waves in composite laminates using a two-dimensional model in ANSYS. This is done by simulating the Lamb waves propagating along the plane of the structure in the form of a time dependent force excitation. In this paper, an 8-layered carbon reinforced fibre plastic (CRFP) is modelled as transversely isotropic and dissipative medium and the effect of flaws is analyzed with respect to the defects induced between various layers of the composite laminate. This effort is the basis for the future development of a 3D model for similar applications.
Resumo:
Changes in load characteristics, deterioration with age, environmental influences and random actions may cause local or global damage in structures, especially in bridges, which are designed for long life spans. Continuous health monitoring of structures will enable the early identification of distress and allow appropriate retrofitting in order to avoid failure or collapse of the structures. In recent times, structural health monitoring (SHM) has attracted much attention in both research and development. Local and global methods of damage assessment using the monitored information are an integral part of SHM techniques. In the local case, the assessment of the state of a structure is done either by direct visual inspection or using experimental techniques such as acoustic emission, ultrasonic, magnetic particle inspection, radiography and eddy current. A characteristic of all these techniques is that their application requires a prior localization of the damaged zones. The limitations of the local methodologies can be overcome by using vibration-based methods, which give a global damage assessment. The vibration-based damage detection methods use measured changes in dynamic characteristics to evaluate changes in physical properties that may indicate structural damage or degradation. The basic idea is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Changes in the physical properties will therefore cause changes in the modal properties. Any reduction in structural stiffness and increase in damping in the structure may indicate structural damage. This research uses the variations in vibration parameters to develop a multi-criteria method for damage assessment. It incorporates the changes in natural frequencies, modal flexibility and modal strain energy to locate damage in the main load bearing elements in bridge structures such as beams, slabs and trusses and simple bridges involving these elements. Dynamic computer simulation techniques are used to develop and apply the multi-criteria procedure under different damage scenarios. The effectiveness of the procedure is demonstrated through numerical examples. Results show that the proposed method incorporating modal flexibility and modal strain energy changes is competent in damage assessment in the structures treated herein.
Resumo:
In this research the reliability and availability of fiberboard pressing plant is assessed and a cost-based optimization of the system using the Monte- Carlo simulation method is performed. The woodchip and pulp or engineered wood industry in Australia and around the world is a lucrative industry. One such industry is hardboard. The pressing system is the main system, as it converts the wet pulp to fiberboard. The assessment identified the pressing system has the highest downtime throughout the plant plus it represents the bottleneck in the process. A survey in the late nineties revealed there are over one thousand plants around the world, with the pressing system being a common system among these plants. No work has been done to assess or estimate the reliability of such a pressing system; therefore this assessment can be used for assessing any plant of this type.