998 resultados para semantic patterns
Resumo:
Recognition of environmental sounds is believed to proceed through discrimination steps from broad to more narrow categories. Very little is known about the neural processes that underlie fine-grained discrimination within narrow categories or about their plasticity in relation to newly acquired expertise. We investigated how the cortical representation of birdsongs is modulated by brief training to recognize individual species. During a 60-minute session, participants learned to recognize a set of birdsongs; they improved significantly their performance for trained (T) but not control species (C), which were counterbalanced across participants. Auditory evoked potentials (AEPs) were recorded during pre- and post-training sessions. Pre vs. post changes in AEPs were significantly different between T and C i) at 206-232ms post stimulus onset within a cluster on the anterior part of the left superior temporal gyrus; ii) at 246-291ms in the left middle frontal gyrus; and iii) 512-545ms in the left middle temporal gyrus as well as bilaterally in the cingulate cortex. All effects were driven by weaker activity for T than C species. Thus, expertise in discriminating T species modulated early stages of semantic processing, during and immediately after the time window that sustains the discrimination between human vs. animal vocalizations. Moreover, the training-induced plasticity is reflected by the sharpening of a left lateralized semantic network, including the anterior part of the temporal convexity and the frontal cortex. Training to identify birdsongs influenced, however, also the processing of C species, but at a much later stage. Correct discrimination of untrained sounds seems to require an additional step which results from lower-level features analysis such as apperception. We therefore suggest that the access to objects within an auditory semantic category is different and depends on subject's level of expertise. More specifically, correct intra-categorical auditory discrimination for untrained items follows the temporal hierarchy and transpires in a late stage of semantic processing. On the other hand, correct categorization of individually trained stimuli occurs earlier, during a period contemporaneous with human vs. animal vocalization discrimination, and involves a parallel semantic pathway requiring expertise.
Resumo:
Contact zones of closely related and ecologically similar species constitute rare opportunities to study the evolutionary consequences of past speciation processes. They represent natural laboratories in which strong competition could lead to the exclusion of one species, or the various species may switch into distinct ecological niches. Alternatively, if reproductive isolation has not yet been achieved, they may hybridize. We elucidate the degree of taxon integrity by comparing genetics and habitat use of three similar-sized congeneric viper species, Vipera ammodytes, Viperaaspis, and Viperaberus, of Nadiza Valley in western Slovenia. No hybridization was detected for either mitochondrial or nuclear genomes. Similarly, external intermediacy by a single prestudy viper (probably V.ammodytesxV. aspis) indicates that hybridization occasionally occurs, but should be very rare. Populations of the three related viperids are partially allopatric in Nadiza Valley, but they also coexist in a narrow contact zone in the montane grassland along the south-exposed slope of Mount Stol (1673m a.s.l.). Here, the three species that occupy areas in or near patches of rocky microhabitats (e.g. stone piles, slides, and walls) live in syntopy. However, fine-scale measurements of structural components show partial habitat segregation, in which V.berus becomes more dominant at elevations above 1400m and occupies mostly the mountain ridge and north-exposed slopes of Mount Stol, V.aspis occurs below 1300m and is the only species to inhabit stoneless patches of grass and bushes around 1000m and lower, and V.ammodytes occurs at all elevations up to 1500m, but is restricted to a rocky microhabitat. We suggest that a high degree of microstructure divergence, slightly different environmental niches, and a generally favourable habitat for all three viper species, keep the pressure for mis-mating and hybridization low, although mechanisms such as reduced hybrid inferiority and temporal mating segregation cannot yet be excluded.
Resumo:
Sparus aurata larvae reared under controlled water-temperature conditions during the first 24 days after hatching displayed a linear relationship between age (t) and standard length (SL): SL = 2.68 + 0.19 t (r2 = 0.91l). Increments were laid down in the sagittae with daily periodicity starting on day of hatching. Standard length (SL) and sagittae radius (OR) were correlated: SL(mm) = 2.65 + 0.012 OR(mm). The series of measurements of daily growth increment widths (DWI), food density and water temperature were analyzed by means of time series analysis. The DWI series were strongly autocorrelated, the growth on any one day was dependent upon growth on the previous day. Time series of water temperatures showed, as expected, a random pattern of variation, while food consumed daily was a function of food consumed the two previous days. The DWI series and the food density were correlated positively at lags 1 and 2. The results provided evidence of the importance of food intake upon the sagittae growth when temperature is optimal (20ºC). Sagittae growth was correlated with growth on the previous day, so this should be taken into account when fish growth is derived from sagittae growth rates.
Resumo:
Objective: To compare lower incisor dentoalveolar compensation and mandible symphysis morphology among Class I and Class III malocclusion patients with different facial vertical skeletal patterns. Materials and Methods: Lower incisor extrusion and inclination, as well as buccal (LA) and lingual (LP) cortex depth, and mandibular symphysis height (LH) were measured in 107 lateral cephalometric x-rays of adult patients without prior orthodontic treatment. In addition, malocclusion type (Class I or III) and facial vertical skeletal pattern were considered. Through a principal component analysis (PCA) related variables were reduced. Simple regression equation and multivariate analyses of variance were also used. Results: Incisor mandibular plane angle (P < .001) and extrusion (P = .03) values showed significant differences between the sagittal malocclusion groups. Variations in the mandibular plane have a negative correlation with LA (Class I P = .03 and Class III P = .01) and a positive correlation with LH (Class I P = .01 and Class III P = .02) in both groups. Within the Class III group, there was a negative correlation between the mandibular plane and LP (P = .02). PCA showed that the tendency toward a long face causes the symphysis to elongate and narrow. In Class III, alveolar narrowing is also found in normal faces. Conclusions: Vertical facial pattern is a significant factor in mandibular symphysis alveolar morphology and lower incisor positioning, both for Class I and Class III patients. Short-faced Class III patients have a widened alveolar bone. However, for long-faced and normal-faced Class III, natural compensation elongates the symphysis and influences lower incisor position.
Resumo:
Letter to the Editor on Wang M, Wang Q, Wang Z, Zhang X, Pan Y. The molecular evolutionary patterns of the insulin/FOXO signaling pathway
Resumo:
Daily rhythmicity in the locomotor activity of laboratory animals has been studied in great detail for many decades, but the daily pattern of locomotor activity has not received as much attention in humans. We collected waist-worn accelerometer data from more than 2000 individuals from five countries differing in socioeconomic development and conducted a detailed analysis of human locomotor activity. Body mass index (BMI) was computed from height and weight. Individual activity records lasting 7 days were subjected to cosinor analysis to determine the parameters of the daily activity rhythm: mesor (mean level), amplitude (half the range of excursion), acrophase (time of the peak) and robustness (rhythm strength). The activity records of all individual participants exhibited statistically significant 24-h rhythmicity, with activity increasing noticeably a few hours after sunrise and dropping off around the time of sunset, with a peak at 1:42 pm on average. The acrophase of the daily rhythm was comparable in men and women in each country but varied by as much as 3 h from country to country. Quantification of the socioeconomic stages of the five countries yielded suggestive evidence that more developed countries have more obese residents, who are less active, and who are active later in the day than residents from less developed countries. These results provide a detailed characterization of the daily activity pattern of individual human beings and reveal similarities and differences among people from five countries differing in socioeconomic development.
Resumo:
Ample evidence indicates that inhibitory control (IC), a key executive component referring to the ability to suppress cognitive or motor processes, relies on a right-lateralized fronto-basal brain network. However, whether and how IC can be improved with training and the underlying neuroplastic mechanisms remains largely unresolved. We used functional and structural magnetic resonance imaging to measure the effects of 2 weeks of training with a Go/NoGo task specifically designed to improve frontal top-down IC mechanisms. The training-induced behavioral improvements were accompanied by a decrease in neural activity to inhibition trials within the right pars opercularis and triangularis, and in the left pars orbitalis of the inferior frontal gyri. Analyses of changes in brain anatomy induced by the IC training revealed increases in grey matter volume in the right pars orbitalis and modulations of white matter microstructure in the right pars triangularis. The task-specificity of the effects of training was confirmed by an absence of change in neural activity to a control working memory task. Our combined anatomical and functional findings indicate that differential patterns of functional and structural plasticity between and within inferior frontal gyri enhanced the speed of top-down inhibition processes and in turn IC proficiency. The results suggest that training-based interventions might help overcoming the anatomic and functional deficits of inferior frontal gyri manifesting in inhibition-related clinical conditions. More generally, we demonstrate how multimodal neuroimaging investigations of training-induced neuroplasticity enable revealing novel anatomo-functional dissociations within frontal executive brain networks. Hum Brain Mapp 36:2527-2543, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Article About the Authors Metrics Comments Related Content Abstract Introduction Functionality Implementation Discussion Acknowledgments Author Contributions References Reader Comments (0) Figures Abstract Despite of the variety of available Web services registries specially aimed at Life Sciences, their scope is usually restricted to a limited set of well-defined types of services. While dedicated registries are generally tied to a particular format, general-purpose ones are more adherent to standards and usually rely on Web Service Definition Language (WSDL). Although WSDL is quite flexible to support common Web services types, its lack of semantic expressiveness led to various initiatives to describe Web services via ontology languages. Nevertheless, WSDL 2.0 descriptions gained a standard representation based on Web Ontology Language (OWL). BioSWR is a novel Web services registry that provides standard Resource Description Framework (RDF) based Web services descriptions along with the traditional WSDL based ones. The registry provides Web-based interface for Web services registration, querying and annotation, and is also accessible programmatically via Representational State Transfer (REST) API or using a SPARQL Protocol and RDF Query Language. BioSWR server is located at http://inb.bsc.es/BioSWR/and its code is available at https://sourceforge.net/projects/bioswr/under the LGPL license.
Resumo:
BACKGROUND: Recent methodological advances allow better examination of speciation and extinction processes and patterns. A major open question is the origin of large discrepancies in species number between groups of the same age. Existing frameworks to model this diversity either focus on changes between lineages, neglecting global effects such as mass extinctions, or focus on changes over time which would affect all lineages. Yet it seems probable that both lineages differences and mass extinctions affect the same groups. RESULTS: Here we used simulations to test the performance of two widely used methods under complex scenarios of diversification. We report good performances, although with a tendency to over-predict events with increasing complexity of the scenario. CONCLUSION: Overall, we find that lineage shifts are better detected than mass extinctions. This work has significance to assess the methods currently used to estimate changes in diversification using phylogenetic trees. Our results also point toward the need to develop new models of diversification to expand our capabilities to analyse realistic and complex evolutionary scenarios.
Resumo:
Neutral and selective processes c an drive repeated patterns of evolu tion in dif ferent groups of populationsexp eriencing similar ecol ogica l gradients. In this paper, we used a combinat ion of nucl ear and mitochondrialDNA markers, as well as geometric morphometrics, to investigate repeated patterns of morphological andgenetic divergence of E uropean minnows in two mountain ranges : the Pyrenees and the Al ps. Europeanminnows (Phoxinus phoxinus) are cyprinid fish i nha bitin g most freshwater bodies in Europe, including those indifferent mountain r anges that could act as major geographical barriers to gene flow. We explored patterns ofP. phoxinus phenotypic and genetic di versi fication along a gradi ent of alti tude common to the two mountainranges, and tested for isolation by distance (IBD), isolation by environment (IBE) and isolation by adaptation(IBA). The results indicated that populations from the Pyr enees a nd the Alps bel ong to two well differentiated,reciprocally monophyletic mt DNA lineages. Substantial genetic differentiation due to geographical isolationwithin and between populations from the Pyrenees and the Alps was also found using rapidly evolving AFLPsmarkers (isolation by distance or IBD), as well as morphological differences between mountain ranges. Als o,morphology varied strong ly with elevation and so did genetic differentiation to a lower extent. Despitemoderate evidence for IBE and IBA, and therefore of repeated evolution, substantial population heterogeneitywas found at the genetic level, suggesting that selection and population specific genetic drift act in concert toaffect genetic divergence.
Resumo:
The pumpkinseed Lepomis gibbosus, an omnivorous, nest guarding North American sunfish, was introduced into European waters about 100 years ago. To assess growth performance following introduction, we reviewed the available data for North American and European populations of pumpkinseed and compared the back-calculated age-specific growth for juveniles (standard length, SL, at age two) and adults (age two to five increment) as well as adult body size (SL at age five), von Bertalanffy growth model parameters and the index of growth (in length) performance (φ′). For continental comparisons of growth trajectory, mean growth curves for North American and Europe were calculated with the von Bertalanffy model using pooled data sets for each continent. Juvenile growth rate did not differ between European and North American pumpkinseed, but mean adult body size and adult growth rate were both significantly greater in North American than European populations. Adult body size decreased with increasing latitude (ANOVA) in North American populations, but this was not observed with adult growth rate. In contrast, adult body size tended to increase with latitude in European populations. Adult body size correlated significantly with φ′. The von Bertalanffy model described the overall growth patterns of North American and European populations reasonably well, but on the individual population level, length asymptotes were unrealistic (estimates that were > 20 % of the mean back-calculated size for the oldest age class) for a third of European populations and 80% of the North American populations. In contrast to North American pumpkinseed populations, somatic growth in European populations appears to be compromised by limited, but adequate, food resources, probably due to strong intraspecific interactions. This appears to be especially acute in adults, having potential ramifications for life span and reproductive allocation
Resumo:
Hotels and second home rentals are two of the most important tourist accommodation options in Spain. In terms of seasonality, almost all previous studies have analysed tourism demand from the point of view either of total arrivals or the number of tourists lodged in a single accommodation type (hotels, rural accommodation, etc). However, there are no studies focusing on price seasonality orcomparing seasonality among different accommodation types. By using seasonality indicators and a price index constructed by means of hedonic methods, this paper aims to shed some light on seasonal pricing patterns among second home rentals and hotels. The paper relies on a 2004 database of 144 hotels and 1,002 apartments on the Costa Brava (northeast Spain). The results show that prices for second home rentals display a smoother seasonal pattern than hotels due to reduced price differences between shoulder (May and October) and peak periods (August)
Resumo:
The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.