927 resultados para security network
Resumo:
Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN). Here, using Chinese hamster ovary (CHO) Niemann-Pick type C1 (NPC1) mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6) accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs). This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.
Resumo:
This paper describes research investigating expertise and the types of knowledge used by airport security screeners. It applies a multi method approach incorporating eye tracking, concurrent verbal protocol and interviews. Results show that novice and expert security screeners primarily access perceptual knowledge and experience little difficulty during routine situations. During non-routine situations however, experience was found to be a determining factor for effective interactions and problem solving. Experts were found to use strategic knowledge and demonstrated structured use of interface functions integrated into efficient problem solving sequences. Comparatively, novices experienced more knowledge limitations and uncertainty resulting in interaction breakdowns. These breakdowns were characterised by trial and error interaction sequences. This research suggests that the quality of knowledge security screeners have access to has implications on visual and physical interface interactions and their integration into problem solving sequences. Implications and recommendations for the design of interfaces used in the airport security screening context are discussed. The motivations of recommendations are to improve the integration of interactions into problem solving sequences, encourage development of problem scheme knowledge and to support the skills and knowledge of the personnel that interact with security screening systems.
Resumo:
Cancer can be defined as a deregulation or hyperactivity in the ongoing network of intracellular and extracellular signaling events. Reverse phase protein microarray technology may offer a new opportunity to measure and profile these signaling pathways, providing data on post-translational phosphorylation events not obtainable by gene microarray analysis. Treatment of ovarian epithelial carcinoma almost always takes place in a metastatic setting since unfortunately the disease is often not detected until later stages. Thus, in addition to elucidation of the molecular network within a tumor specimen, critical questions are to what extent do signaling changes occur upon metastasis and are there common pathway elements that arise in the metastatic microenvironment. For individualized combinatorial therapy, ideal therapeutic selection based on proteomic mapping of phosphorylation end points may require evaluation of the patient's metastatic tissue. Extending these findings to the bedside will require the development of optimized protocols and reference standards. We have developed a reference standard based on a mixture of phosphorylated peptides to begin to address this challenge.
Resumo:
This paper examines a buffer scheme to mitigate the negative impacts of power-conditioned loads on network voltage and transient stabilities. The scheme is based on the use of battery energy-storage systems in the buffers. The storage systems ensure that protected loads downstream of the buffers can ride through upstream voltage sags and swells. Also, by controlling the buffers to operate in either constant impedance or constant power modes, power is absorbed or injected by the storage systems. The scheme thereby regulates the rotor-angle deviations of generators and enhances network transient stability. A computational method is described in which the capacity of the storage systems is determined to achieve simultaneously the above dual objectives of load ride-through and stability enhancement. The efficacy of the resulting scheme is demonstrated through numerical examples.
Resumo:
We consider the following problem: a user stores encrypted documents on an untrusted server, and wishes to retrieve all documents containing some keywords without any loss of data confidentiality. Conjunctive keyword searches on encrypted data have been studied by numerous researchers over the past few years, and all existing schemes use keyword fields as compulsory information. This however is impractical for many applications. In this paper, we propose a scheme of keyword field-free conjunctive keyword searches on encrypted data, which affirmatively answers an open problem asked by Golle et al. at ACNS 2004. Furthermore, the proposed scheme is extended to the dynamic group setting. Security analysis of our constructions is given in the paper.
Resumo:
The paper investigates the design of secret sharing that is immune against cheating (as defined by the Tompa-Woll attack). We examine secret sharing with binary shares and secrets. Bounds on the probability of successful cheating are given for two cases. The first case relates to secret sharing based on bent functions and results in a non-perfect scheme. The second case considers perfect secret sharing built on highly nonlinear balanced Boolean functions.
Resumo:
Pseudorandom Generators (PRGs) based on the RSA inversion (one-wayness) problem have been extensively studied in the literature over the last 25 years. These generators have the attractive feature of provable pseudorandomness security assuming the hardness of the RSA inversion problem. However, despite extensive study, the most efficient provably secure RSA-based generators output asymptotically only at most O(logn) bits per multiply modulo an RSA modulus of bitlength n, and hence are too slow to be used in many practical applications. To bring theory closer to practice, we present a simple modification to the proof of security by Fischlin and Schnorr of an RSA-based PRG, which shows that one can obtain an RSA-based PRG which outputs Ω(n) bits per multiply and has provable pseudorandomness security assuming the hardness of a well-studied variant of the RSA inversion problem, where a constant fraction of the plaintext bits are given. Our result gives a positive answer to an open question posed by Gennaro (J. of Cryptology, 2005) regarding finding a PRG beating the rate O(logn) bits per multiply at the cost of a reasonable assumption on RSA inversion.
Resumo:
Toxicity is a major concern for anti-neoplastic drugs, with much of the existing pharmacopoeia being characterized by a very narrow therapeutic index. 'Network-targeted' combination therapy is a promising new concept in cancer therapy, whereby therapeutic index might be improved by targeting multiple nodes in a cell's signaling network, rather than a single node. Here, we examine the potential of this novel approach, illustrating how therapeutic benefit could be achieved with smaller doses of the necessary agents.
Resumo:
Vehicular Ad-hoc Networks (VANETs) can make roads safer, cleaner, and smarter. It can offer a wide range of services, which can be safety and non-safety related. Many safety-related VANETs applications are real-time and mission critical, which would require strict guarantee of security and reliability. Even non-safety related multimedia applications, which will play an important role in the future, will require security support. Lack of such security and privacy in VANETs is one of the key hindrances to the wide spread implementations of it. An insecure and unreliable VANET can be more dangerous than the system without VANET support. So it is essential to make sure that “life-critical safety” information is secure enough to rely on. Securing the VANETs along with appropriate protection of the privacy drivers or vehicle owners is a very challenging task. In this work we summarize the attacks, corresponding security requirements and challenges in VANETs. We also present the most popular generic security policies which are based on prevention as well detection methods. Many VANETs applications require system-wide security support rather than individual layer from the VANETs’ protocol stack. In this work we will review the existing works in the perspective of holistic approach of security. Finally, we will provide some possible future directions to achieve system-wide security as well as privacy-friendly security in VANETs.
Resumo:
Social Networks (SN) users have various privacy requirements to protect their information; to address this issue, a six-stage thematic analysis of scholarly articles related to SN user privacy concerns were synthesized. Then this research combines mixed methods research employing the strengths of quantitative and qualitative research to investigate general SN users, and thus construct a new set of ?ve primary and Twenty-?ve secondary SN user privacy requirements. Such an approach has been rarely used to examine the privacy requirements. Factor analysis results show superior agreement with theoretical predictions and signi?cant improvement over previous alternative models of SN user privacy requirements. This research presented here has the potential to provide for the development of more sophisticated privacy controls which will increase the ability of SN users to: specify their rights in SNs and to determine the protection of their own SN data.
Resumo:
Generally wireless sensor networks rely of many-to-one communication approach for data gathering. This approach is extremely susceptible to sinkhole attack, where an intruder attracts surrounding nodes with unfaithful routing information, and subsequently presents selective forwarding or change the data that carry through it. A sinkhole attack causes an important threat to sensor networks and it should be considered that the sensor nodes are mostly spread out in open areas and of weak computation and battery power. In order to detect the intruder in a sinkhole attack this paper suggests an algorithm which firstly finds a group of suspected nodes by analyzing the consistency of data. Then, the intruder is recognized efficiently in the group by checking the network flow information. The proposed algorithm's performance has been evaluated by using numerical analysis and simulations. Therefore, accuracy and efficiency of algorithm would be verified.
Resumo:
Due to extension of using CCTVs and the other video security systems in all areas, these sorts of devices have been introduced as the most important digital evidences to search and seizure crimes. Video forensics tools are developed as a part of digital forensics tools to analyze digital evidences and clear vague points of them for presenting in the courts Existing video forensics tools have been facilitated the investigation process by providing different features based on various video editing techniques. In this paper, some of the most popular video forensics tools are discussed and the strengths and shortages of them are compared and consequently, an alternative framework which includes the strengths of existing popular tools is introduced.
Resumo:
The term “Human error” can simply be defined as an error which made by a human. In fact, Human error is an explanation of malfunctions, unintended consequents from operating a system. There are many factors that cause a person to have an error due to the unwanted error of human. The aim of this paper is to investigate the relationship of human error as one of the factors to computer related abuses. The paper beings by computer-relating to human errors and followed by mechanism mitigate these errors through social and technical perspectives. We present the 25 techniques of computer crime prevention, as a heuristic device that assists. A last section discussing the ways of improving the adoption of security, and conclusion.
Resumo:
Three proof requirements as essential for a sustainable land registration system. These were proof of identity, proof of ownership, and authority to deal. Our attention in this paper is drawn to the latter two requirements and will ask whether the introduction of the Property Exchange of Australia (PEXA), and its underpinning regulatory regime will meet the concerns that we have in relation to proof of ownership and authority to deal. In drawing out some problems with PEXA, we then offer an innovative idea, sourced from the transfer of equities that could serve to generate discussion on how we can ensure the Torrens system of land registration is sustainable for another 160 years.
Resumo:
Dealing with digital medical images is raising many new security problems with legal and ethical complexities for local archiving and distant medical services. These include image retention and fraud, distrust and invasion of privacy. This project was a significant step forward in developing a complete framework for systematically designing, analyzing, and applying digital watermarking, with a particular focus on medical image security. A formal generic watermarking model, three new attack models, and an efficient watermarking technique for medical images were developed. These outcomes contribute to standardizing future research in formal modeling and complete security and computational analysis of watermarking schemes.