975 resultados para säästö


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies documented that a distinct southward shift of central-Pacific low-level wind anomalies occurring during the ENSO decaying phase, is caused by an interaction between the Western Pacific annual cycle and El Niño-Southern Oscillation (ENSO) variability. The present study finds that the meridional movement of the central-Pacific wind anomalies appears only during traditional Eastern-Pacific (or EP) El Niño events rather than in Central-Pacific (CP) El Niño events in which sea surface temperature (SST) anomalies are confined to the central Pacific. The zonal structure of ENSO-related SST anomalies therefore has an important effect on meridional asymmetry in the associated atmospheric response and its modulation by the annual cycle. In contrast to EP El Niño events, the SST anomalies of CP El Niño events extend further west towards to the warm pool region with its climatological warm SSTs. In the warm pool region, relatively small SST anomalies thus are able to excite convection anomalies on both sides of the equator, even with a meridionally asymmetric SST background state. Therefore, almost meridionally symmetric precipitation and wind anomalies are observed over the central Pacific during the decaying phase of CP El Niño events. The SST anomaly pattern of La Niña events is similar to CP El Niño events with a reversed sign. Accordingly, no distinct southward displacement of the atmospheric response occurs over the central Pacific during the La Niña decaying phase. These results have important implications for ENSO climate impacts over East Asia, since the anomalous low-level anticyclone over the western North Pacific is an integral part of the annual cycle-modulated ENSO response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Information was collated on the seed storage behaviour of 67 tree species native to the Amazon rainforest of Brazil; 38 appeared to show orthodox, 23 recalcitrant and six intermediate seed storage behaviour. A double-criteria key based on thousand-seed weight and seed moisture content at shedding to estimate likely seed storage behaviour, developed previously, showed good agreement with the above classifications. The key can aid seed storage behaviour identification considerably.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The response of the Southern Ocean to a repeating seasonal cycle of ozone loss is studied in two coupled climate models and found to comprise both fast and slow processes. The fast response is similar to the inter-annual signature of the Southern Annular Mode (SAM) on Sea Surface Temperature (SST), on to which the ozone-hole forcing projects in the summer. It comprises enhanced northward Ekman drift inducing negative summertime SST anomalies around Antarctica, earlier sea ice freeze-up the following winter, and northward expansion of the sea ice edge year-round. The enhanced northward Ekman drift, however, results in upwelling of warm waters from below the mixed layer in the region of seasonal sea ice. With sustained bursts of westerly winds induced by ozone-hole depletion, this warming from below eventually dominates over the cooling from anomalous Ekman drift. The resulting slow-timescale response (years to decades) leads to warming of SSTs around Antarctica and ultimately a reduction in sea-ice cover year-round. This two-timescale behavior - rapid cooling followed by slow but persistent warming - is found in the two coupled models analysed, one with an idealized geometry, the other a complex global climate model with realistic geometry. Processes that control the timescale of the transition from cooling to warming, and their uncertainties are described. Finally we discuss the implications of our results for rationalizing previous studies of the effect of the ozone-hole on SST and sea-ice extent. %Interannual variability in the Southern Annular Mode (SAM) and sea ice covary such that an increase and southward shift in the surface westerlies (a positive phase of the SAM) coincides with a cooling of Sea Surface Temperature (SST) around 70-50$^\circ$S and an expansion of the sea ice cover, as seen in observations and models alike. Yet, in modeling studies, the Southern Ocean warms and sea ice extent decreases in response to sustained, multi-decadal positive SAM-like wind anomalies driven by 20th century ozone depletion. Why does the Southern Ocean appear to have disparate responses to SAM-like variability on interannual and multidecadal timescales? Here it is demonstrated that the response of the Southern Ocean to ozone depletion has a fast and a slow response. The fast response is similar to the interannual variability signature of the SAM. It is dominated by an enhanced northward Ekman drift, which transports heat northward and causes negative SST anomalies in summertime, earlier sea ice freeze-up the following winter, and northward expansion of the sea ice edge year round. The enhanced northward Ekman drift causes a region of Ekman divergence around 70-50$^\circ$S, which results in upwelling of warmer waters from below the mixed layer. With sustained westerly wind enhancement in that latitudinal band, the warming due to the anomalous upwelling of warm waters eventually dominates over the cooling from the anomalous Ekman drift. Hence, the slow response ultimately results in a positive SST anomaly and a reduction in the sea ice cover year round. We demonstrate this behavior in two models: one with an idealized geometry and another, more detailed, global climate model. However, the models disagree on the timescale of transition from the fast (cooling) to the slow (warming) response. Processes that controls this transition and their uncertainties are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments with CO2 instantaneously quadrupled and then held constant are used to show that the relationship between the global-mean net heat input to the climate system and the global-mean surface-air-temperature change is nonlinear in Coupled Model Intercomparison Project phase 5 (CMIP5) Atmosphere-Ocean General Circulation Models (AOGCMs). The nonlinearity is shown to arise from a change in strength of climate feedbacks driven by an evolving pattern of surface warming. In 23 out of the 27 AOGCMs examined the climate feedback parameter becomes significantly (95% confidence) less negative – i.e. the effective climate sensitivity increases – as time passes. Cloud feedback parameters show the largest changes. In the AOGCM-mean approximately 60% of the change in feedback parameter comes from the topics (30N-30S). An important region involved is the tropical Pacific where the surface warming intensifies in the east after a few decades. The dependence of climate feedbacks on an evolving pattern of surface warming is confirmed using the HadGEM2 and HadCM3 atmosphere GCMs (AGCMs). With monthly evolving sea-surface-temperatures and sea-ice prescribed from its AOGCM counterpart each AGCM reproduces the time-varying feedbacks, but when a fixed pattern of warming is prescribed the radiative response is linear with global temperature change or nearly so. We also demonstrate that the regression and fixed-SST methods for evaluating effective radiative forcing are in principle different, because rapid SST adjustment when CO2 is changed can produce a pattern of surface temperature change with zero global mean but non-zero change in net radiation at the top of the atmosphere (~ -0.5 Wm-2 in HadCM3).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sea surface temperature has been an important application of remote sensing from space for three decades. This chapter first describes well-established methods that have delivered valuable routine observations of sea surface temperature for meteorology and oceanography. Increasingly demanding requirements, often related to climate science, have highlighted some limitations of these ap-proaches. Practitioners have had to revisit techniques of estimation, of characterising uncertainty, and of validating observations—and even to reconsider the meaning(s) of “sea surface temperature”. The current understanding of these issues is reviewed, drawing attention to ongoing questions. Lastly, the prospect for thermal remote sens-ing of sea surface temperature over coming years is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since 2007 a large decline in Arctic sea ice has been observed. The large-scale atmospheric circulation response to this decline is investigated in ERA-Interim reanalyses and HadGEM3 climate model experiments. In winter, post-2007 observed circulation anomalies over the Arctic, North Atlantic and Eurasia are small compared to interannual variability. In summer, the post-2007 observed circulation is dominated by an anticyclonic anomaly over Greenland which has a large signal-to-noise ratio. Climate model experiments driven by observed SST and sea ice anomalies are able to capture the summertime pattern of observed circulation anomalies, although the magnitude is a third of that observed. The experiments suggest high SSTs and reduced sea ice in the Labrador Sea lead to positive temperature anomalies in the lower troposphere which weaken the westerlies over North America through thermal wind balance. The experiments also capture cyclonic anomalies over Northwest Europe, which are consistent with downstream Rossby wave propagation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present and examine a multi-sensor global compilation of mid-Holocene (MH) sea surface temperatures (SST), based on Mg/Ca and alkenone palaeothermometry and reconstructions obtained using planktonic foraminifera and organic-walled dinoflagellate cyst census counts. We assess the uncertainties originating from using different methodologies and evaluate the potential of MH SST reconstructions as a benchmark for climate-model simulations. The comparison between different analytical approaches (time frame, baseline climate) shows the choice of time window for the MH has a negligible effect on the reconstructed SST pattern, but the choice of baseline climate affects both the magnitude and spatial pattern of the reconstructed SSTs. Comparison of the SST reconstructions made using different sensors shows significant discrepancies at a regional scale, with uncertainties often exceeding the reconstructed SST anomaly. Apparent patterns in SST may largely be a reflection of the use of different sensors in different regions. Overall, the uncertainties associated with the SST reconstructions are generally larger than the MH anomalies. Thus, the SST data currently available cannot serve as a target for benchmarking model simulations. Further evaluations of potential subsurface and/or seasonal artifacts that may contribute to obscure the MH SST reconstructions are urgently needed to provide reliable benchmarks for model evaluations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have shown that the Indo-Pacific atmospheric response to ENSO comprises two dominant modes of variability: a meridionally quasi-symmetric response (independent from the annual cycle) and an anti-symmetric response (arising from the nonlinear atmospheric interaction between ENSO variability and the annual cycle), referred to as the combination mode (C-Mode). This study demonstrates that the direct El Niño signal over the tropics is confined to the equatorial region and has no significant impact on the atmospheric response over East Asia. The El Niño-associated equatorial anomalies can be expanded towards off-equatorial regions by the C-Mode through ENSO’s interaction with the annual cycle. The C-Mode is the prime driver for the development of an anomalous low-level anticyclone over the western North Pacific (WNP) during the El Niño decay phase, which usually transports more moisture to East Asia and thereby causes more precipitation over southern China. We use an Atmospheric General Circulation Model that well reproduces the WNP anticyclonic anomalies when both El Niño sea surface temperature (SST) anomalies as well as the SST annual cycle are prescribed as boundary conditions. However, no significant WNP anticyclonic circulation anomaly appears during the El Niño decay phase when excluding the SST annual cycle. Our analyses of observational data and model experiments suggest that the annual cycle plays a key role in the East Asian climate anomalies associated with El Niño through their nonlinear atmospheric interaction. Hence, a realistic simulation of the annual cycle is crucial in order to correctly capture the ENSO-associated climate anomalies over East Asia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pronounced intermodel differences in the projected response of land surface precipitation (LSP) to future anthropogenic forcing remain in the Coupled Model Intercomparison Project Phase 5 model integrations. A large fraction of the intermodel spread in projected LSP trends is demonstrated here to be associated with systematic differences in simulated sea surface temperature (SST) trends, especially the representation of changes in (i) the interhemispheric SST gradient and (ii) the tropical Pacific SSTs. By contrast, intermodel differences in global mean SST, representative of differing global climate sensitivities, exert limited systematic influence on LSP patterns. These results highlight the importance to regional terrestrial precipitation changes of properly simulating the spatial distribution of large-scale, remote changes as reflected in the SST response to increasing greenhouse gases. Moreover, they provide guidance regarding which region-specific precipitation projections may be potentially better constrained for use in climate change impact assessments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A project on sea surface temperature is generating new climate data records from satellite observations. The data are independent of in situ observations and are harmonious across satellite sensors to maximize stability and have realistic, context-sensitive uncertainty estimates at all spatial and temporal scales. The project, part of the European Space Agency Climate Change Initiative (SST CCI), now seeks to establish a useful method for communicating uncertainty in sea surface temperatures. This goal was the impetus for a workshop held in November 2014 in Exeter in the United Kingdom, summarised in this article.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Madden-Julian oscillation (MJO) is a convectively coupled 30-70 day (intraseasonal) tropical atmospheric mode that drives variations in global weather, but which is poorly simulated in most atmospheric general circulation models. Over the past two decades, field campaigns and modeling experiments have suggested that tropical atmosphere-ocean interactions may sustain or amplify the pattern of enhanced and suppressed atmospheric convection that defines the MJO, and encourage its eastward propagation through the Indian and Pacific Oceans. New observations collected during the past decade have advanced our understand of the ocean response to atmospheric MJO forcing and the resulting intraseasonal sea surface temperature (SST) fluctuations. Numerous modeling studies have revealed a considerable impact of the mean state on MJO ocean-atmosphere coupled processes, as well as the importance of resolving the diurnal cycle of atmosphere--upper-ocean interactions. New diagnostic methods provide insight to atmospheric variability and physical processes associated with the MJO, but offer limited insight on the role of ocean feedbacks. Consequently, uncertainty remains concerning the role of the ocean in MJO theory. Our understanding of how atmosphere-ocean coupled processes affect the MJO can be improved by collecting observations in poorly sampled regions of MJO activity, assessing oceanic and atmospheric drivers of surface fluxes, improving the representation of upper-ocean mixing in coupled-model simulations, designing model experiments that minimize mean-state differences, and developing diagnostic tools to evaluate the nature and role of coupled ocean-atmosphere processes over the MJO cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of an international intercomparison project, a set of single column models (SCMs) and cloud-resolving models (CRMs) are run under the weak temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. The simulated column has the same surface conditions as the reference state and is initialized with profiles from the reference state. We performed systematic comparison of the behavior of different models under a consistent implementation of the WTG method and the DGW method and systematic comparison of the WTG and DGW methods in models with different physics and numerics. CRMs and SCMs produce a variety of behaviors under both WTG and DGW methods. Some of the models reproduce the reference state while others sustain a large-scale circulation which results in either substantially lower or higher precipitation compared to the value of the reference state. CRMs show a fairly linear relationship between precipitation and circulation strength. SCMs display a wider range of behaviors than CRMs. Some SCMs under the WTG method produce zero precipitation. Within an individual SCM, a DGW simulation and a corresponding WTG simulation can produce different signed circulation. When initialized with a dry troposphere, DGW simulations always result in a precipitating equilibrium state. The greatest sensitivities to the initial moisture conditions occur for multiple stable equilibria in some WTG simulations, corresponding to either a dry equilibrium state when initialized as dry or a precipitating equilibrium state when initialized as moist. Multiple equilibria are seen in more WTG simulations for higher SST. In some models, the existence of multiple equilibria is sensitive to some parameters in the WTG calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple observational data sets and atmosphere-only simulations from the Coupled Model Intercomparison Project Phase 5 are analyzed to characterize recent rainfall variability and trends over Africa focusing on 1983–2010. Data sets exhibiting spurious variability, linked in part to a reduction in rain gauge density, were identified. The remaining observations display coherent increases in annual Sahel rainfall (29 to 43 mm yr−1 per decade), decreases in March–May East African rainfall (−14 to −65 mm yr−1 per decade), and increases in annual Southern Africa rainfall (32 to 41 mm yr−1 per decade). However, Central Africa annual rainfall trends vary in sign (−10 to +39 mm yr−1 per decade). For Southern Africa, observed and sea surface temperature (SST)-forced model simulated rainfall variability are significantly correlated (r~0.5) and linked to SST patterns associated with recent strengthening of the Pacific Walker circulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The atmospheric response to an idealized decline in Arctic sea ice is investigated in a novel fully coupled climate model experiment. In this experiment two ensembles of single-year model integrations are performed starting on 1 April, the approximate start of the ice melt season. By perturbing the initial conditions of sea ice thickness (SIT), declines in both sea ice concentration and SIT, which result in sea ice distributions that are similar to the recent sea ice minima of 2007 and 2012, are induced. In the ice loss regions there are strong (~3 K) local increases in sea surface temperature (SST); additionally, there are remote increases in SST in the central North Pacific and subpolar gyre in the North Atlantic. Over the central Arctic there are increases in surface air temperature (SAT) of ~8 K due to increases in ocean–atmosphere heat fluxes. There are increases in SAT over continental North America that are in good agreement with recent changes as seen by reanalysis data. It is estimated that up to two-thirds of the observed increase in SAT in this region could be related to Arctic sea ice loss. In early summer there is a significant but weak atmospheric circulation response that projects onto the summer North Atlantic Oscillation (NAO). In early summer and early autumn there is an equatorward shift of the eddy-driven jet over the North Atlantic as a result of a reduction in the meridional temperature gradients. In winter there is no projection onto a particular phase of the NAO.