766 resultados para routing algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optimization technique to solve distribution network planning (DNP) problem is presented. This is a very complex mixed binary nonlinear programming problem. A constructive heuristic algorithm (CHA) aimed at obtaining an excellent quality solution for this problem is presented. In each step of the CHA, a sensitivity index is used to add a circuit or a substation to the distribution network. This sensitivity index is obtained solving the DNP problem considering the numbers of circuits and substations to be added as continuous variables (relaxed problem). The relaxed problem is a large and complex nonlinear programming and was solved through an efficient nonlinear optimization solver. A local improvement phase and a branching technique were implemented in the CHA. Results of two tests using a distribution network are presented in the paper in order to show the ability of the proposed algorithm. ©2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the short term transmission network expansion planning (STTNEP) is solved through a specialized genetic algorithm (SGA). A complete AC model of the transmission network is used, which permits the formulation of an integrated power system transmission network expansion planning problem (real and reactive power planning). The characteristics of the proposed SGA to solve the STTNEP problem are detailed and an interior point method is employed to solve nonlinear programming problems during the solution steps of the SGA. Results of tests carried out with two electrical energy systems show the capabilities of the SGA and also the viability of using the AC model to solve the STTNEP problem. © 2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology to solve the transmission network expansion planning problem (TNEP) considering reliability and uncertainty in the demand. The proposed methodology provides an optimal expansion plan that allows the power system to operate adequately with an acceptable level of reliability and in an enviroment with uncertainness. The reliability criterion limits the expected value of the reliability index (LOLE - Loss Of Load Expectation) of the expanded system. The reliability is evaluated for the transmission system using an analytical technique based in enumeration. The mathematical model is solved, in a efficient way, using a specialized genetic algorithm of Chu-Beasley modified. Detailed results from an illustrative example are presented and discussed. © 2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the multiarea optimal power flow (OPF) problem is decoupled into areas creating a set of regional OPF subproblems. The objective is to solve the optimal dispatch of active and reactive power for a determined area, without interfering in the neighboring areas. The regional OPF subproblems are modeled as a large-scale nonlinear constrained optimization problem, with both continuous and discrete variables. Constraints violated are handled as objective functions of the problem. In this way the original problem is converted to a multiobjective optimization problem, and a specifically-designed multiobjective evolutionary algorithm is proposed for solving the regional OPF subproblems. The proposed approach has been examined and tested on the RTS-96 and IEEE 354-bus test systems. Good quality suboptimal solutions were obtained, proving the effectiveness and robustness of the proposed approach. ©2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a heuristic constructive multi-start algorithm (HCMA) to distribution system restoration in real time considering distributed generators installed in the system. The problem is modeled as nonlinear mixed integer and considers the two main goals of the restoration of distribution networks: minimizing the number of consumers without power and the number of switching. The proposed algorithm is implemented in C++ programming language and tested using a large real-life distribution system. The results show that the proposed algorithm is able to provide a set of feasible and good quality solutions in a suitable time for the problem. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmission expansion planning (TEP) is a non-convex optimization problem that can be solved via different heuristic algorithms. A variety of classical as well as heuristic algorithms in literature are addressed to solve TEP problem. In this paper a modified constructive heuristic algorithm (CHA) is proposed for solving such a crucial problem. Most of research papers handle TEP problem by linearization of the non-linear mathematical model while in this research TEP problem is solved via CHA using non-linear model. The proposed methodology is based upon Garver's algorithm capable of applying to a DC model. Simulation studies and tests results on the well known transmission network such as: Garver and IEEE 24-bus systems are carried out to show the significant performance as well as the effectiveness of the proposed algorithm. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Capacitated Arc Routing Problem (CARP) is a well-known NP-hard combinatorial optimization problem where, given an undirected graph, the objective is to find a minimum cost set of tours servicing a subset of required edges under vehicle capacity constraints. There are numerous applications for the CARP, such as street sweeping, garbage collection, mail delivery, school bus routing, and meter reading. A Greedy Randomized Adaptive Search Procedure (GRASP) with Path-Relinking (PR) is proposed and compared with other successful CARP metaheuristics. Some features of this GRASP with PR are (i) reactive parameter tuning, where the parameter value is stochastically selected biased in favor of those values which historically produced the best solutions in average; (ii) a statistical filter, which discard initial solutions if they are unlikely to improve the incumbent best solution; (iii) infeasible local search, where high-quality solutions, though infeasible, are used to explore the feasible/infeasible boundaries of the solution space; (iv) evolutionary PR, a recent trend where the pool of elite solutions is progressively improved by successive relinking of pairs of elite solutions. Computational tests were conducted using a set of 81 instances, and results reveal that the GRASP is very competitive, achieving the best overall deviation from lower bounds and the highest number of best solutions found. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-relational data mining enables pattern mining from multiple tables. The existing multi-relational mining association rules algorithms are not able to process large volumes of data, because the amount of memory required exceeds the amount available. The proposed algorithm MRRadix presents a framework that promotes the optimization of memory usage. It also uses the concept of partitioning to handle large volumes of data. The original contribution of this proposal is enable a superior performance when compared to other related algorithms and moreover successfully concludes the task of mining association rules in large databases, bypass the problem of available memory. One of the tests showed that the MR-Radix presents fourteen times less memory usage than the GFP-growth. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aiming to ensure greater reliability and consistency of data stored in the database, the data cleaning stage is set early in the process of Knowledge Discovery in Databases (KDD) and is responsible for eliminating problems and adjust the data for the later stages, especially for the stage of data mining. Such problems occur in the instance level and schema, namely, missing values, null values, duplicate tuples, values outside the domain, among others. Several algorithms were developed to perform the cleaning step in databases, some of them were developed specifically to work with the phonetics of words, since a word can be written in different ways. Within this perspective, this work presents as original contribution an optimization of algorithm for the detection of duplicate tuples in databases through phonetic based on multithreading without the need for trained data, as well as an independent environment of language to be supported for this. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of new technologies that use peer-to-peer networks grows every day, with the object to supply the need of sharing information, resources and services of databases around the world. Among them are the peer-to-peer databases that take advantage of peer-to-peer networks to manage distributed knowledge bases, allowing the sharing of information semantically related but syntactically heterogeneous. However, it is a challenge to ensure the efficient search for information without compromising the autonomy of each node and network flexibility, given the structural characteristics of these networks. On the other hand, some studies propose the use of ontology semantics by assigning standardized categorization of information. The main original contribution of this work is the approach of this problem with a proposal for optimization of queries supported by the Ant Colony algorithm and classification though ontologies. The results show that this strategy enables the semantic support to the searches in peer-to-peer databases, aiming to expand the results without compromising network performance. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work it is proposed to validate an evolutionary tuning algorithm in plants composed by a grid connected inverter. The optimization aims the tuning of the slopes of P-Ω and Q-V curves so that the system is stable, damped and minimum settling time. Simulation and experimental results are presented to prove the feasibility of the proposed approach. However, experimental results demonstrate a compromising effect of grid frequency oscillations in the active power transferring. In addition, it was proposed an additional loop to compensate this effect ensuring a constant active power flow. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An enhanced genetic algorithm (EGA) is applied to solve the long-term transmission expansion planning (LTTEP) problem. The following characteristics of the proposed EGA to solve the static and multistage LTTEP problem are presented, (1) generation of an initial population using fast, efficient heuristic algorithms, (2) better implementation of the local improvement phase and (3) efficient solution of linear programming problems (LPs). Critical comparative analysis is made between the proposed genetic algorithm and traditional genetic algorithms. Results using some known systems show that the proposed EGA presented higher efficiency in solving the static and multistage LTTEP problem, solving a smaller number of linear programming problems to find the optimal solutions and thus finding a better solution to the multistage LTTEP problem. Copyright © 2012 Luis A. Gallego et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. © 2012 Brazilian Operations Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last few years, crop rotation has gained attention due to its economic, environmental and social importance which explains why it can be highly beneficial for farmers. This paper presents a mathematical model for the Crop Rotation Problem (CRP) that was adapted from literature for this highly complex combinatorial problem. The CRP is devised to find a vegetable planting program that takes into account green fertilization restrictions, the set-aside period, planting restrictions for neighboring lots and for crop sequencing, demand constraints, while, at the same time, maximizing the profitability of the planted area. The main aim of this study is to develop a genetic algorithm and test it in a real context. The genetic algorithm involves a constructive heuristic to build the initial population and the operators of crossover, mutation, migration and elitism. The computational experiment was performed for a medium dimension real planting area with 16 lots, considering 29 crops of 10 different botanical families and a two-year planting rotation. Results showed that the algorithm determined feasible solutions in a reasonable computational time, thus proving its efficacy for dealing with this practical application.