772 resultados para robotic grasping
Resumo:
The objective in this work is to build a rapid and automated numerical design method that makes optimal design of robots possible. In this work, two classes of optimal robot design problems were specifically addressed: (1) When the objective is to optimize a pre-designed robot, and (2) when the goal is to design an optimal robot from scratch. In the first case, to reach the optimum design some of the critical dimensions or specific measures to optimize (design parameters) are varied within an established range. Then the stress is calculated as a function of the design parameter(s), the design parameter(s) that optimizes a pre-determined performance index provides the optimum design. In the second case, this work focuses on the development of an automated procedure for the optimal design of robotic systems. For this purpose, Pro/Engineer© and MatLab© software packages are integrated to draw the robot parts, optimize them, and then re-draw the optimal system parts.
Resumo:
In human society, people encounter various deontic conflicts every day. Deontic decisions are those that include moral, ethical, and normative aspects. Here, the concern is with deontic conflicts: decisions where all the alternatives lead to the violation of some norms. People think critically about these kinds of decisions. But, just ‘what’ they think about is not always clear. People use certain estimating factors/criteria to balance the tradeoffs when they encounter deontic conflicts. It is unclear what subjective factors people use to make a deontic decision. An elicitation approach called the Open Factor Conjoint System is proposed, which applies an online elicitation methodology which is a combination of two well-know research methodologies: repertory grid and conjoint analysis. This new methodology is extended to be a web based application. It seeks to elicit additional relevant (subjective) factors from people, which affect deontic decisions. The relative importance and utility values are used for the development of a decision model to predict people’s decisions. Fundamentally, this methodology was developed and intended to be applicable for a wide range of elicitation applications with minimal experimenter bias. Comparing with the traditional method, this online survey method reduces the limitation of time and space in data collection and this methodology can be applied in many fields. Two possible applications were addressed: robotic vehicles and the choice of medical treatment. In addition, this method can be applied to many research related disciplines in cross-cultural research due to its online ability with global capacity.
Resumo:
A Waveguide Microgripper utilizes flexible optical waveguides as gripping arms, which provide the physical means for grasping a microobject, while simultaneously enabling light to be delivered and collected. This unique capability allows extensive optical characterization of the structure being held such as transmission, reflection or fluorescence. One of the simplest capabilities of the waveguide microgripper is to be able to detect the presence of a microobject between the microgripper facets by monitoring the transmitted intensity of light coupled through the facets. The intensity of coupled light is expected to drop when there is an object obstructing the path of light. The optical sensing and characterization function of the microgripper is a strong function of the optical power incident on the structure of interest. Hence it is important to understand the factors affecting the power distribution across the facet. The microgripper is also capable of detecting the fluorescence. This capability of microgripper is expected to have applications in medical, bio-medical and related fields.
Resumo:
Instrumentation is a tool of fundamental importance for research in several areas of human knowledge. Research projects are often unfeasible when data cannot be obtained due to lack of instruments, especially due to impor ting difficulties and the high costs there associated. Thus, in order to collaborate with the enhancement of a national technology, a multiband hand - held sun p hotometer (FSM - 4) was developed to operate in the 500 nm, 670 nm, 870 nm and 940 nm bands. In the 500 nm, 670 nm and 870 nm bands aerosols are monitored for evaluation of the AOD (Aerosol Optical Depth), and the PWC (Precipitable Water Column) is evaluated in the 940 nm band. For the development of the mech anical and electronic parts for the FSM - 4, th e materials and componen ts should combine low cost and quality of the data collected. The calibration process utilized the Langley method (ML) and Modified Langley Method (MLM). These methods are usually applied at high altitudes in order to provide atmosp heric optical stability. This condition however can be found in low height sites as shown in the research by Liu et al. (2010). Thus, for calibration of the FSM - 4, we investigated the atmospher ic optical stability utilizing the ML and MLM at a site in the cit y of Caicó / RN, located in the s emiarid region in northeastern Brazil. This site lies in a region far aw ay from large urban centers and activities generating anthropogenic atmospheric pollution. Data for calibration of the prototype were collected usin g the FSM - 4 in two separate operations during the dry season, one in December 2012 and another in September 2013. The methodologies showed optical atmospheric instability in the studied region through the dispersion of the values obtained for the calibrati on constant. This dispersion is affected by the variability of AOD and PWC during the appl ication of the above mentioned methods . As an alternative to the descr ibed sun photometer calibration , a short study was performed using the sun photometer worldwide network AERONET/NASA (AERsol RObotic NETwork – US Space Agency), installed in Petrolina / PE in Brazil. Data were collected for three days utilizing the AERONET instruments and the FSM - 4, operating simultaneously on the same site. By way of the ML and MLM techniques, convergent test values were obtained for the calibration constants, despite the low amount of data collected. This calibration transfer methodology proved to be a viable alternative to the FSM - 4 calibration .
Resumo:
We propose in this work, a new method of conceptual organization of areas involving assistive technology, categorizing them in a logical and simple manner; Furthermore, we also propose the implementation of an interface based on electroculography, able to generate high-level commands, to trigger robotic, computer and electromechanical devices. To validate the eye interface, was developed an electronic circuit associated with a computer program that captured the signals generated by eye movements of users, generating high-level commands, able to trigger an active bracing and many other electromechanical systems. The results showed that it was possible to control many electromechanical systems through only eye movements. The interface is presented as a viable way to perform the proposed task and can be improved in the signals analysis in the the digital level. The diagrammatic model developed, presented as a tool easy to use and understand, providing the conceptual organization needs of assistive technology
Resumo:
We propose a mechatronic system for monitoring water quality in rivers, lakes, dams and sea, able to perform the acquisition, processing and presentation of data via the web in real time, in order to facilitate analysis quickly and needs by interested communities. The hardware architecture and software monitoring system has been developed so that it can be generic, that is, supporting different applications. Nevertheless, as a validation of the proposed system, we built a prototype that operates embarked on an autonomous robotic sailboat, a responsible platform for collecting the data in multiple predefined points from a ground station with a planning system navigation. This final application combines the advantages of autonomy of a robotic sailboat with the need for fast and accurate monitoring of water quality, in addition to the use of an autonomous robotic sailboat unmanned facilitate the development of other research in this area.
Resumo:
Teaching Portuguese language in Brazilian public schools is still limited mostly to studying decontextualized text fragments, memorizing classifications and cult of grammar rules. Considering the language as a social, cultural practice which emerges from the intersubjective interaction, we sought to propose an educational intervention that prioritizes the retextualization processes from speech to the writing of memoirs as a textual genre, so as to contribute for improving learner’s discursive performances. Therefore, paying attention to these concerns and in attempt to contribute for improving the teaching of Portuguese language in elementary school, we chose as privileged locus a 9th grade class from a state school in Bento Fernandes, RN. The corpus is formed by texts produced and retextualized by students from the elders’ oral reports within local community. We sought thus to understand what memory is, its importance for registering local spoken language and culture, as much as to carry out didactic actions that favor students’ learning in the activities of textual production. In light of the theoretical overviews about linguistic-discursive relations, based on Marcuschi’s (1993, 1997, 2001, 2002, 2006, 2008, 2010) conception of oralitiy-writing continuum and the debates proposed by Antunes (2003, 2014), Alves Filho (2011), Koch (2012) and Bakhtin (1992, 2011), we aimed to understand, by analyzing the retextualized memoirs, how these practices complement each other within the process of orality and writing. As for the proposal of didactic sequences, the study has been oriented by Dolz and Scheneuely (2004); as for the memoirs, by the guidelines of Coracine and Ghiraldelo (2011) and Le Goff (2010, 2013). In this way, this work followed the action-research methodology in a qualitative approach, considering the teacher (researcher) as an active agent involved in the process of knowledge production in his own educational practice, so as to interfere in the mediation, knowledge production and its dissemination in classroom context, which is the privileged locus for constructing and transforming process. There is much to be research within the area of retextualization. Yet we verified that this educational intervention, based on discursive operators of retextualization, has been proven viable as an efficient path so that we teachers can work the peculiarities of usages and functions of textual genres in oral and written modalities of a language, without grasping both as a dichotomy. This accredited us to strengthen a discourse that undoes many myths still present in that order, especially the one that causes more damage for the learners of Portuguese language – that writing is a representation of speech.
Resumo:
Total knee arthroplasty (TKA) has revolutionized the life of millions of patients and it is the most efficient treatment in cases of osteoarthritis. The increase in life expectancy has lowered the average age of the patient, which requires a more enduring and performing prosthesis. To improve the design of implants and satisfying the patient's needs, a deep understanding of the knee Biomechanics is needed. To overcome the uncertainties of numerical models, recently instrumented knee prostheses are spreading. The aim of the thesis was to design and manifacture a new prototype of instrumented implant, able to measure kinetics and kinematics (in terms of medial and lateral forces and patellofemoral forces) of different interchangeable designs of prosthesis during experiments tests within a research laboratory, on robotic knee simulator. Unlike previous prototypes it was not aimed for industrial applications, but purely focusing on research. After a careful study of the literature, and a preliminary analytic study, the device was created modifying the structure of a commercial prosthesis and transforming it in a load cell. For monitoring the kinematics of the femoral component a three-layers, piezoelettric position sensor was manifactured using a Velostat foil. This sensor has responded well to pilot test. Once completed, such device can be used to validate existing numerical models of the knee and of TKA and create new ones, more accurate.It can lead to refinement of surgical techniques, to enhancement of prosthetic designs and, once validated, and if properly modified, it can be used also intraoperatively.
Resumo:
Acknowledgements We thank Brian Roberts and Mike Harris for responding to our questions regarding their paper; Zoltan Dienes for advice on Bayes factors; Denise Fischer, Melanie Römer, Ioana Stanciu, Aleksandra Romanczuk, Stefano Uccelli, Nuria Martos Sánchez, and Rosa María Beño Ruiz de la Sierra for help collecting data; Eva Viviani for managing data collection in Parma. We thank Maurizio Gentilucci for letting us use his lab, and the Centro Intradipartimentale Mente e Cervello (CIMeC), University of Trento, and especially Francesco Pavani for lending us his motion tracking equipment. We thank Rachel Foster for proofreading. KKK was supported by a Ph.D. scholarship as part of a grant to VHF within the International Graduate Research Training Group on Cross-Modal Interaction in Natural and Artificial Cognitive Systems (CINACS; DFG IKG-1247) and TS by a grant (DFG – SCHE 735/3-1); both from the German Research Council.
Resumo:
While environmental literary criticism has traditionally focused its attention on the textual representation of specific places, recent ecocritical scholarship has expanded this focus to consider the treatment of time in environmental literature and culture. As environmental scholars, activists, scientists, and artists have noted, one of the major difficulties in grasping the reality and implications of climate change is a limited temporal imagination. In other words, the ability to comprehend and integrate different shapes, scales, and speeds of history is a precondition for ecologically sustainable and socially equitable responses to climate change.
My project examines the role that literary works might play in helping to create such an expanded sense of history. As I show how American writers after 1945 have treated the representation of time and history in relation to environmental questions, I distinguish between two textual subfields of environmental temporality. The first, which I argue is characteristic of mainstream environmentalism, is disjunctive, with abrupt environmental changes separating the past and the present. This subfield contains many canonical works of postwar American environmental writing, including Aldo Leopold’s A Sand County Almanac, Edward Abbey’s Desert Solitaire, Annie Dillard’s Pilgrim at Tinker Creek, and Kim Stanley Robinson’s Science in the Capital trilogy. From treatises on the ancient ecological histories of particular sites to meditations on the speed of climate change, these works evince a preoccupation with environmental time that has not been acknowledged within the spatially oriented field of environmental criticism. However, by positing radical breaks between environmental pasts and environmental futures, they ultimately enervate the political charge of history and elide the human dimensions of environmental change, in terms both of environmental injustice and of possible social responses.
By contrast, the second subfield, which I argue is characteristic of environmental justice, is continuous, showing how historical patterns persist even across social and ecological transformations. I trace this version of environmental thought through a multicultural corpus of novels consisting of Ralph Ellison’s Invisible Man, Ishmael Reed’s Mumbo Jumbo, Helena María Viramontes’ Under the Feet of Jesus, Linda Hogan’s Solar Storms, and Octavia Butler’s Parable of the Sower and Parable of the Talents. Some of these novels do not document specific instances of environmental degradation or environmental injustice and, as a result, have not been critically interpreted as relevant for environmental analysis; others are more explicit in their discussion of environmental issues and are recognized as part of the canon of American environmental literature. However, I demonstrate that, across all of these texts, counterhegemonic understandings of history inform resistance to environmental degradation and exploitation. These texts show that environmental problems cannot be fully understood, nor environmental futures addressed, without recognizing the way that social histories of inequality and environmental histories of extraction continue to structure politics and ecology in the present.
Ultimately, then, the project offers three conclusions. First, it suggests that the second version of environmental temporality holds more value than the first for environmental cultural studies, in that it more compellingly and accurately represents the social implications of environmental issues. Second, it shows that “environmental literature” is most usefully understood not as the literature that explicitly treats environmental issues, but rather as the literature that helps to produce the sense of time that contemporary environmental crises require. Third, it shows how literary works can not only illuminate the relationship between American ideas about nature and social justice, but also operate as a specifically literary form of eco-political activism.
Resumo:
The coupling of mechanical stress fields in polymers to covalent chemistry (polymer mechanochemistry) has provided access to previously unattainable chemical reactions and polymer transformations. In the bulk, mechanochemical activation has been used as the basis for new classes of stress-responsive polymers that demonstrate stress/strain sensing, shear-induced intermolecular reactivity for molecular level remodeling and self-strengthening, and the release of acids and other small molecules that are potentially capable of triggering further chemical response. The potential utility of polymer mechanochemistry in functional materials is limited, however, by the fact that to date, all reported covalent activation in the bulk occurs in concert with plastic yield and deformation, so that the structure of the activated object is vastly different from its nascent form. Mechanochemically activated materials have thus been limited to “single use” demonstrations, rather than as multi-functional materials for structural and/or device applications. Here, we report that filled polydimethylsiloxane (PDMS) elastomers provide a robust elastic substrate into which mechanophores can be embedded and activated under conditions from which the sample regains its original shape and properties. Fabrication is straightforward and easily accessible, providing access for the first time to objects and devices that either release or reversibly activate chemical functionality over hundreds of loading cycles.
While the mechanically accelerated ring-opening reaction of spiropyran to merocyanine and associated color change provides a useful method by which to image the molecular scale stress/strain distribution within a polymer, the magnitude of the forces necessary for activation had yet to be quantified. Here, we report single molecule force spectroscopy studies of two spiropyran isomers. Ring opening on the timescale of tens of milliseconds is found to require forces of ~240 pN, well below that of previously characterized covalent mechanophores. The lower threshold force is a combination of a low force-free activation energy and the fact that the change in rate with force (activation length) of each isomer is greater than that inferred in other systems. Importantly, quantifying the magnitude of forces required to activate individual spiropyran-based force-probes enables the probe behave as a “scout” of molecular forces in materials; the observed behavior of which can be extrapolated to predict the reactivity of potential mechanophores within a given material and deformation.
We subsequently translated the design platform to existing dynamic soft technologies to fabricate the first mechanochemically responsive devices; first, by remotely inducing dielectric patterning of an elastic substrate to produce assorted fluorescent patterns in concert with topological changes; and second, by adopting a soft robotic platform to produce a color change from the strains inherent to pneumatically actuated robotic motion. Shown herein, covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation into value-added, constructive covalent chemical responses. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional actuating device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the actuator in a way that might also be coupled to feedback loops that allow autonomous, self-regulation of activity.
In the future, both the specific material and the general approach should be useful in enriching the responsive functionality of soft elastomeric materials and devices. We anticipate the development of new mechanophores that, like the materials, are reversibly and repeatedly activated, expanding the capabilities of soft, active devices and further permitting dynamic control over chemical reactivity that is otherwise inaccessible, each in response to a single remote signal.
Resumo:
Microstructure manipulation is a fundamental process to the study of biology and medicine, as well as to advance micro- and nano-system applications. Manipulation of microstructures has been achieved through various microgripper devices developed recently, which lead to advances in micromachine assembly, and single cell manipulation, among others. Only two kinds of integrated feedback have been demonstrated so far, force sensing and optical binary feedback. As a result, the physical, mechanical, optical, and chemical information about the microstructure under study must be extracted from macroscopic instrumentation, such as confocal fluorescence microscopy and Raman spectroscopy. In this research work, novel Micro-Opto-Electro-Mechanical-System (MOEMS) microgrippers are presented. These devices utilize flexible optical waveguides as gripping arms, which provide the physical means for grasping a microobject, while simultaneously enabling light to be delivered and collected. This unique capability allows extensive optical characterization of the structure being held such as transmission, reflection, or fluorescence. The microgrippers require external actuation which was accomplished by two methods: initially with a micrometer screw, and later with a piezoelectric actuator. Thanks to a novel actuation mechanism, the “fishbone”, the gripping facets remain parallel within 1 degree. The design, simulation, fabrication, and characterization are systematically presented. The devices mechanical operation was verified by means of 3D finite element analysis simulations. Also, the optical performance and losses were simulated by the 3D-to-2D effective index (finite difference time domain FDTD) method as well as 3D Beam Propagation Method (3D-BPM). The microgrippers were designed to manipulate structures from submicron dimensions up to approximately 100 µm. The devices were implemented in SU-8 due to its suitable optical and mechanical properties. This work demonstrates two practical applications: the manipulation of single SKOV-3 human ovarian carcinoma cells, and the detection and identification of microparts tagged with a fluorescent “barcode” implemented with quantum dots. The novel devices presented open up new possibilities in the field of micromanipulation at the microscale, scalable to the nano-domain.
Resumo:
Stroke is a leading cause of death and permanent disability worldwide, affecting millions of individuals. Traditional clinical scores for assessment of stroke-related impairments are inherently subjective and limited by inter-rater and intra-rater reliability, as well as floor and ceiling effects. In contrast, robotic technologies provide objective, highly repeatable tools for quantification of neurological impairments following stroke. KINARM is an exoskeleton robotic device that provides objective, reliable tools for assessment of sensorimotor, proprioceptive and cognitive brain function by means of a battery of behavioral tasks. As such, KINARM is particularly useful for assessment of neurological impairments following stroke. This thesis introduces a computational framework for assessment of neurological impairments using the data provided by KINARM. This is done by achieving two main objectives. First, to investigate how robotic measurements can be used to estimate current and future abilities to perform daily activities for subjects with stroke. We are able to predict clinical scores related to activities of daily living at present and future time points using a set of robotic biomarkers. The findings of this analysis provide a proof of principle that robotic evaluation can be an effective tool for clinical decision support and target-based rehabilitation therapy. The second main objective of this thesis is to address the emerging problem of long assessment time, which can potentially lead to fatigue when assessing subjects with stroke. To address this issue, we examine two time reduction strategies. The first strategy focuses on task selection, whereby KINARM tasks are arranged in a hierarchical structure so that an earlier task in the assessment procedure can be used to decide whether or not subsequent tasks should be performed. The second strategy focuses on time reduction on the longest two individual KINARM tasks. Both reduction strategies are shown to provide significant time savings, ranging from 30% to 90% using task selection and 50% using individual task reductions, thereby establishing a framework for reduction of assessment time on a broader set of KINARM tasks. All in all, findings of this thesis establish an improved platform for diagnosis and prognosis of stroke using robot-based biomarkers.
Resumo:
This paper presents a solution to part of the problem of making robotic or semi-robotic digging equipment less dependant on human supervision. A method is described for identifying rocks of a certain size that may affect digging efficiency or require special handling. The process involves three main steps. First, by using range and intensity data from a time-of-flight (TOF) camera, a feature descriptor is used to rank points and separate regions surrounding high scoring points. This allows a wide range of rocks to be recognized because features can represent a whole or just part of a rock. Second, these points are filtered to extract only points thought to belong to the large object. Finally, a check is carried out to verify that the resultant point cloud actually represents a rock. Results are presented from field testing on piles of fragmented rock. Note to Practitioners—This paper presents an algorithm to identify large boulders in a pile of broken rock as a step towards an autonomous mining dig planner. In mining, piles of broken rock can contain large fragments that may need to be specially handled. To assess rock piles for excavation, we make use of a TOF camera that does not rely on external lighting to generate a point cloud of the rock pile. We then segment large boulders from its surface by using a novel feature descriptor and distinguish between real and false boulder candidates. Preliminary field experiments show promising results with the algorithm performing nearly as well as human test subjects.
Resumo:
Loss of limb results in loss of function and a partial loss of freedom. A powered prosthetic device can partially assist an individual with everyday tasks and therefore return some level of independence. Powered upper limb prostheses are often controlled by the user generating surface electromyographic (SEMG) signals. The goal of this thesis is to develop a virtual environment in which a user can control a virtual hand to safely grasp representations of everyday objects using EMG signals from his/her forearm muscles, and experience visual and vibrotactile feedback relevant to the grasping force in the process. This can then be used to train potential wearers of real EMG controlled prostheses, with or without vibrotactile feedback. To test this system an experiment was designed and executed involving ten subjects, twelve objects, and three feedback conditions. The tested feedback conditions were visual, vibrotactile, and both visual and vibrotactile. In each experimental exercise the subject attempted to grasp a virtual object on the screen using the virtual hand controlled by EMG electrodes placed on his/her forearm. Two metrics were used: score, and time to task completion, where score measured grasp dexterity. It was hypothesized that with the introduction of vibrotactile feedback, dexterity, and therefore score, would improve and time to task completion would decrease. Results showed that time to task completion increased, and score did not improve with vibrotactile feedback. Details on the developed system, the experiment, and the results are presented in this thesis.