932 resultados para reverse transcriptase inhibitors
Resumo:
Reverse osmosis (RO) brine produced at a full-scale coal seam gas (CSG) water treatment facility was characterized with spectroscopic and other analytical techniques. A number of potential scalants including silica, calcium, magnesium, sulphates and carbonates, all of which were present in dissolved and non-dissolved forms, were characterized. The presence of spherical particles with a size range of 10–1000 nm and aggregates of 1–10 microns was confirmed by transmission electron microscopy (TEM). Those particulates contained the following metals in decreasing order: K, Si, Sr, Ca, B, Ba, Mg, P, and S. Characterization showed that nearly one-third of the total silicon in the brine was present in the particulates. Further, analysis of the RO brine suggested supersaturation and precipitation of metal carbonates and sulphates during the RO process should take place and could be responsible for subsequently capturing silica in the solid phase. However, the precipitation of crystalline carbonates and sulphates are complex. X-ray diffraction analysis did not confirm the presence of common calcium carbonates or sulphates but instead showed the presence of a suite of complex minerals, to which amorphous silica and/or silica rich compounds could have adhered. A filtration study showed that majority of the siliceous particles were less than 220 nm in size, but could still be potentially captured using a low molecular weight ultrafiltration membrane.
Resumo:
The DAYCENT biogeochemical model was used to investigate how the use of fertilizers coated with nitrification inhibitors and the introduction of legumes in the crop rotation can affect subtropical cereal production and N2O emissions. The model was validated using comprehensive multi-seasonal, high-frequency dataset from two field investigations conducted on an Oxisol, which is the most common soil type in subtropical regions. Different N fertilizer rates were tested for each N management strategy and simulated under varying weather conditions. DAYCENT was able to reliably predict soil N dynamics, seasonal N2O emissions and crop production, although some discrepancies were observed in the treatments with low or no added N inputs and in the simulation of daily N2O fluxes. Simulations highlighted that the high clay content and the relatively low C levels of the Oxisol analyzed in this study limit the chances for significant amounts of N to be lost via deep leaching or denitrification. The application of urea coated with a nitrification inhibitor was the most effective strategy to minimize N2O emissions. This strategy however did not increase yields since the nitrification inhibitor did not substantially decrease overall N losses compared to conventional urea. Simulations indicated that replacing part of crop N requirements with N mineralized by legume residues is the most effective strategy to reduce N2O emissions and support cereal productivity. The results of this study show that legumes have significant potential to enhance the sustainable and profitable intensification of subtropical cereal cropping systems in Oxisols.
Resumo:
Salinity gradient power is proposed as a source of renewable energy when two solutions of different salinity are mixed. In particular, Pressure Retarded Osmosis (PRO) coupled with a Reverse Osmosis process (RO) has been previously suggested for power generation, using RO brine as the draw solution. However, integration of PRO with RO may have further value for increasing the extent of water recovery in a desalination process. Consequently, this study was designed to model the impact of various system parameters to better understand how to design and operate practical PRO-RO units. The impact of feed salinity and recovery rate for the RO process on the concentration of draw solution, feed pressure, and membrane area of the PRO process was evaluated. The PRO system was designed to operate at maximum power density of . Model results showed that the PRO power density generated intensified with increasing seawater salinity and RO recovery rate. For an RO process operating at 52% recovery rate and 35 g/L feed salinity, a maximum power density of 24 W/m2 was achieved using 4.5 M NaCl draw solution. When seawater salinity increased to 45 g/L and the RO recovery rate was 46%, the PRO power density increased to 28 W/m2 using 5 M NaCl draw solution. The PRO system was able to increase the recovery rate of the RO by up to 18% depending on seawater salinity and RO recovery rate. This result suggested a potential advantage of coupling PRO process with RO system to increase the recovery rate of the desalination process and reduce brine discharge.
Resumo:
The DAYCENT biogeochemical model was used to investigate how the use of fertilizers coated with nitrification inhibitors and the introduction of legumes in the crop rotation can affect subtropical cereal production and {N2O} emissions. The model was validated using comprehensive multi-seasonal, high-frequency dataset from two field investigations conducted on an Oxisol, which is the most common soil type in subtropical regions. Different N fertilizer rates were tested for each N management strategy and simulated under varying weather conditions. DAYCENT was able to reliably predict soil N dynamics, seasonal {N2O} emissions and crop production, although some discrepancies were observed in the treatments with low or no added N inputs and in the simulation of daily {N2O} fluxes. Simulations highlighted that the high clay content and the relatively low C levels of the Oxisol analyzed in this study limit the chances for significant amounts of N to be lost via deep leaching or denitrification. The application of urea coated with a nitrification inhibitor was the most effective strategy to minimize {N2O} emissions. This strategy however did not increase yields since the nitrification inhibitor did not substantially decrease overall N losses compared to conventional urea. Simulations indicated that replacing part of crop N requirements with N mineralized by legume residues is the most effective strategy to reduce {N2O} emissions and support cereal productivity. The results of this study show that legumes have significant potential to enhance the sustainable and profitable intensification of subtropical cereal cropping systems in Oxisols.
Resumo:
Modern dairy farming in Australia relies on substantial inputs of fertiliser nitrogen (N) to underpin economic production. However, N lost from dairy systems represents an opportunity cost and can pose a number of environmental risks. Nitrogen cycle inhibitors can be co-applied with N fertilisers to slow the conversion of urea to NH4+ to reduce losses via volatilisation, and slow the conversion of NH4+ to NO3- to minimize leaching of NO3- and gaseous losses via nitrification and denitrification. In a field campaign in a high input ryegrass-kikuyu pasture system we compared the soil N pools, losses and pasture production between a) urea coated with the nitrification inhibitor (3,4-dimethyl pyrazole phosphate - DMPP) b) urea coated with the urease inhibitor (N-(n-butyl) thiophosphoric triamide - NBPT) and c) standard urea. There was no treatment effect (P>0.05) on soil mineral N, pasture yield, N2O flux nor leaching of NO3- cf. standard urea. We hypothesise that at our site, because gaseous losses were highly episodic (rainfall was erratic and displayed no seasonal rainfall nor soil wetting pattern) that there was a lack of coincidence of N application and conditions conducive to gaseous losses, thus the effectiveness of the inhibitor products was minimal and did not result in an increase in pasture yield. There remains a paucity of knowledge on N cycle inhibitors in relation to their effective use in field system to increase N use efficiency. Further research is required to define under what field conditions inhibitor products are effective in order to be able to provide accurate advice to managers of nitrogen in production systems.
Resumo:
Plant seeds contain a large number of protease inhibitors of animal, fungal, and bacterial origin. One of the well-studied families of these inhibitors is the Bowman-Birk family(BBI). The BBIs from dicotyledonous seeds are 8K, double-headed proteins. In contrast, the 8K inhibitors from monocotyledonous seeds are single headed. Monocots also have a 16K, double-headed inhibitor. We have determined the primary structure of a Bowman-Birk inhibitor from a dicot, horsegram, by sequential edman analysis of the intact protein and peptides derived from enzymatic and chemical cleavage. The 76-residue-long inhibitor is very similar to that ofMacrotyloma axillare. An analysis of this inhibitor along with 26 other Bowman-Birk inhibitor domains (MW 8K) available in the SWISSPROT databank revealed that the proteins from monocots and dicots belong to related but distinct families. Inhibitors from monocots show larger variation in sequence. Sequence comparison shows that a crucial disulphide which connects the amino and carboxy termini of the active site loop is lost in monocots. The loss of a reactive site in monocots seems to be correlated to this. However, it appears that this disulphide is not absolutely essential for retention of inhibitory function. Our analysis suggests that gene duplication leading to a 16K inhibitor in monocots has occurred, probably after the divergence of monocots and dicots, and also after the loss of second reactive site in monocots.
Resumo:
Background and Objective: Oral submucous fibrosis, a disease of collagen disorder, has been attributed to arecoline present in the saliva of betel quid chewers. However, the molecular basis of the action of arecoline in the pathogenesis of oral submucous fibrosis is poorly understood. The basic aim of our study was to elucidate the mechanism underlying the action of arecoline on the expression of genes in oral fibroblasts. Material and Methods: Human keratinocytes (HaCaT cells) and primary human gingival fibroblasts were treated with arecoline in combination with various pathway inhibitors, and the expression of transforming growth factor-beta isoform genes and of collagen isoforms was assessed using reverse transcription polymerase chain reaction analysis. Results: We observed the induction of transforming growth factor-beta2 by arecoline in HaCaT cells and this induction was found to be caused by activation of the M-3 muscarinic acid receptor via the induction of calcium and the protein kinase C pathway. Most importantly, we showed that transforming growth factor-beta2 was significantly overexpressed in oral submucous fibrosis tissues (p = 0.008), with a median of 2.13 (n = 21) compared with 0.75 (n = 18) in normal buccal mucosal tissues. Furthermore, arecoline down-regulated the expression of collagens 1A1 and 3A1 in human primary gingival fibroblasts; however these collagens were induced by arecoline in the presence of spent medium of cultured human keratinocytes. Treatment with a transforming growth factor-beta blocker, transforming growth factor-beta1 latency-associated peptide, reversed this up-regulation of collagen, suggesting a role for profibrotic cytokines, such as transforming growth factor-beta, in the induction of collagens. Conclusion: Taken together, our data highlight the importance of arecoline-induced epithelial changes in the pathogenesis of oral submucous fibrosis.
Resumo:
Hepatotoxicity due to overdose of the analgesic and antipyretic acetaminophen (A-PAIP) is a major cause of liver failure in adults. To better understand the contributions of different signaling pathways, the expression and role of Ras activation was evaluated after oral dosing of mice with APAP (400-500 mg/kg). Ras-guanosine triphosphate (GTP) is induced early and in an oxidative stress-dependent manner. The functional role of Ras activation was studied by a single intraperitoneal injection of the neutral sphingomyelinase and farnesyltransferase inhibitor (FTI) manumycin A (I mg/kg), which lowers induction of Ras-GTP and serum amounts of alanine aminotransferase (ALT). APAP dosing decreases hepatic glutathione amounts, which are not affected by manumycin A treatment. However, APAP-induced activation of c-Jun N-terminal kinase, which plays an important role, is reduced by manumycin A. Also, APAP-induced mitochondrial reactive oxygen species are reduced by manumycin A at a later time point during liver injury. Importantly, the induction of genes involved in the inflammatory response (including iNos, gp91phox, and Fasl) and serum amounts of proinflammatory cytokines interferon-gamma (IFN gamma) and tumor necrosis factor alpha, which increase greatly with APAP challenge, are suppressed with manumycin A. The FTI ctivity of manumycin A is most likely involved in reducing APAP-induced liver injury, because a specific neutral sphingomyelinase inhibitor, GW4869 (I mg/kg), did not show any hepatoprotective effect. Notably, a structurally distinct FTI, gliotoxin (I mg/kg), also inhibits Ras activation and reduces serum amounts of ALT and IFN-gamma after APAP dosing. Finally, histological analysis confirmed the hepatoprotective effect f manumycin A and gliotoxin during APAP-induced liver damage. Conclusion: This study identifies a key role for Ras activation and demonstrates the therapeutic efficacy of FTIs during APAP-induced liver injury.
Development and characterization of lysine based tripeptide analogues as inhibitors of Sir2 activity
Resumo:
Sirtuins are NAD(+) dependent deacetylases that modulate various essential cellular functions. Development of peptide based inhibitors of Sir2s would prove useful both as pharmaceutical agents and as effectors by which downstream cellular alterations can be monitored. Click chemistry that utilizes Huisgen's 1,3-dipolar cycloaddition permits attachment of novel modifications onto the side chain of lysine. Herein, we report the synthesis of peptide analogues prepared using click reactions on N epsilon-propargyloxycarbonyl protected lysine residues and their characterization as inhibitors of Plasmodium falciparum Sir2 activity. The peptide based inhibitors exhibited parabolic competitive inhibition with respect to acetylated-peptide substrate and parabolic non-competitive inhibition with NAD(+) supporting the formation of EI2 and E.NAD(+).I-2 complexes. Cross-competition inhibition analysis with the non-competitive inhibitor nicotinamide (NAM) ruled out the possibility of the NAM-binding site being the second inhibitor binding site, suggesting the presence of a unique alternate pocket commodating the inhibitor. One of these compounds was also found to be a potent inhibitor of the intraerythrocytic growth of P. falciparum with 50% inhibitory concentration in the micromolar range.
Resumo:
Objectives: To examine the trends in the prescribing of subsidised proton pump inhibitors (PPIs) and histamine receptor antagonists (H2RAs), in the Australian population from 1995 to 2006 to encourage discussion regarding appropriate clinical use. PPIs and H2RAs are the second highest drug cost to the publicly subsidised Pharmaceutical Benefits Scheme (PBS). Design: Government data on numbers of subsidised scripts, quantity and doses for PPIs and H2RAs were analysed by gender and age, dose and indication. Main outcome measure: Drug utilisation as DDD [defined daily dose]/1000 population/day. Results: The use of combined PPIs increased by 1318%. Utilisation increased substantially after the relaxation of the subsidised indications for PPIs in 2001. Omeprazole had the largest market share but was substituted by its S-enantiomer esomeprazole after its introduction in 2002. There was considerable use in the elderly with the peak use being in those aged 80 years and over. The utilisation of H2RAs declined 72% over 12 years. Conclusions: PPI use has increased substantially, not only due to substitution of H2RAs but to expansion in the overall market. Utilisation does not appear to be commensurate with prevalence of gastro-oesophageal reflux disease (GORD) nor with prescribing guidelines for PPIs, with significant financial costs to patients and PBS. This study encourages clinical discussion regarding quality use of these medicines. © 2010 John Wiley & Sons, Ltd.
Resumo:
A structure-based approach has been adopted to develop 2'substituted analogs of triclosan. The Cl at position 2' in ring B of triclosan was chemically substituted with other functional groups like NH2, NO2 and their inhibitory potencies against PfENR were determined. The binding energies of the 2' substituted analogs of triclosan for enoyl-acyl carrier protein reductase (ENR) of Plasmodium falciparum were determined using Autodock. Based on the autodock results, we synthesized the potential compounds. The IC50 and inhibition constant (K-i) of 2' substituted analogs of triclosan were determined against purified PfENR. Among them, two compounds,2-(2'-Amino-4'-chloro-phenoxy)-5-chloro-phenol (compound 4) and 5-chloro-2-(4'-chloro-2'-nitro-phenoxy)-phenol) (compound 5) exhibited good potencies. Compound 4 followed uncompetitive inhibition kinetics with crotonoyl CoA and competitive with NADH. It was shown to have an IC50 of 110 nM; inhibition constant was 104 nM with the substrate and 61 nM with the cofactor. IC50 Of compound 5 was determined to be 229 nM. Compounds 4 and 5 showed significant inhibition of the parasite growth in P. falciparum culture. (C) 2009 IUBMB IUBMB Life, 61(11):1083-1091, 2009.
Resumo:
Matrix metalloproteinases (MMPs) represent a family of 23 metalloendopeptidases, collectively capable of degrading all components of the extracellular matrix. MMPs have been implicated in several inflammatory processes such as arthritis, atherosclerosis, and even carcinomas. They are also involved in several beneficial activities such as epithelial repair. MMPs are inhibited by endogenous tissue inhibitors of matrix metalloproteinases (TIMP). In this study, MMPs were investigated in intestinal mucosa of inflammatory bowel diseases (IBD), chronic intestinal disorders. The main focus was to characterize mucosal inflammation in the intestine, but also cutaneous pyoderma gangrenosum (PG), to assess similarites with IBD inflammation. MMPs and TIMPs were mainly examined in colonic mucosa, in adult Crohn s disease (CD), and paediatric CD, ulcerative colitis (UC), and indeterminate colitis (IC). Ileal pouch mucosa of proctocolectomized paediatric onset IBD patients was also investigated to characterize pouch mucosa. The focus was on finding specific MMPs that could act as markers to differentiate between different IBD disorders, and MMPs that could be implied as markers for tissue injury, potentially serving as targets for MMP-inhibitors. All examinations were performed using immunohistochemistry. The results show that immunosuppressive agents decrease stromal expression of MMP-9 and -26 that could serve as specific targets for MMP-inhibitors in treating CD. In paediatric colonic inflammation, MMP-10 and TIMP-3 present as molecular markers for IBD inflammation, and MMP-7 for CD. MMP expression in the the pouch mucosa could not be classified as strictly IBD- or non-IBD-like. For the first time, this study describes the expression of MMP-3, -7, -9, -12, and TIMP-2 and -3 in pouch mucosa. The MMP profile in PG bears resemblance to both intestinal IBD inflammation and cutaneous inflammation. Based on the results, MMPs and their inhibitors emerge as promising tools in the differential diagnosis of IBD and characterization of the disease subtype, although further research is necessary. Furthermore, the expression of several MMPs in pouch has been described for the first time. While further research is warranted, the findings contribute to a better understanding of events occurring in IBD mucosa, as well as pyoderma gangrenosum.