962 resultados para retinal pigment epithelium (RPE)
Resumo:
PURPOSE Recent advances in optogenetics and gene therapy have led to promising new treatment strategies for blindness caused by retinal photoreceptor loss. Preclinical studies often rely on the retinal degeneration 1 (rd1 or Pde6b(rd1)) retinitis pigmentosa (RP) mouse model. The rd1 founder mutation is present in more than 100 actively used mouse lines. Since secondary genetic traits are well-known to modify the phenotypic progression of photoreceptor degeneration in animal models and human patients with RP, negligence of the genetic background in the rd1 mouse model is unwarranted. Moreover, the success of various potential therapies, including optogenetic gene therapy and prosthetic implants, depends on the progress of retinal degeneration, which might differ between rd1 mice. To examine the prospect of phenotypic expressivity in the rd1 mouse model, we compared the progress of retinal degeneration in two common rd1 lines, C3H/HeOu and FVB/N. METHODS We followed retinal degeneration over 24 weeks in FVB/N, C3H/HeOu, and congenic Pde6b(+) seeing mouse lines, using a range of experimental techniques including extracellular recordings from retinal ganglion cells, PCR quantification of cone opsin and Pde6b transcripts, in vivo flash electroretinogram (ERG), and behavioral optokinetic reflex (OKR) recordings. RESULTS We demonstrated a substantial difference in the speed of retinal degeneration and accompanying loss of visual function between the two rd1 lines. Photoreceptor degeneration and loss of vision were faster with an earlier onset in the FVB/N mice compared to C3H/HeOu mice, whereas the performance of the Pde6b(+) mice did not differ significantly in any of the tests. By postnatal week 4, the FVB/N mice expressed significantly less cone opsin and Pde6b mRNA and had neither ERG nor OKR responses. At 12 weeks of age, the retinal ganglion cells of the FVB/N mice had lost all light responses. In contrast, 4-week-old C3H/HeOu mice still had ERG and OKR responses, and we still recorded light responses from C3H/HeOu retinal ganglion cells until the age of 24 weeks. These results show that genetic background plays an important role in the rd1 mouse pathology. CONCLUSIONS Analogous to human RP, the mouse genetic background strongly influences the rd1 phenotype. Thus, different rd1 mouse lines may follow different timelines of retinal degeneration, making exact knowledge of genetic background imperative in all studies that use rd1 models.
Resumo:
BACKGROUND Low levels of testosterone in men and changes in retinal microvascular calibre are both associated with hypertension and cardiovascular disease risk. Sex hormones are also associated with blood flow in microvascular beds which might be a key intermediate mechanism in the development of hypertension. Whether a direct association between endogenous testosterone and retinal microvascular calibre exists is currently unknown. We aimed to determine whether testosterone is independently associated with ocular perfusion via a possible association with retinal vascular calibre or whether it plays only a secondary role via its effect on blood pressure in a bi-ethnic male cohort. PROBANDS AND METHODS A total of 72 black and 81 white men (28-68 years of age) from the follow-up phase of the Sympathetic activity and Ambulatory Blood Pressure in Africans (SABPA) study were included in this sub-study. Ambulatory pulse pressure and intraocular perfusion pressures were obtained, while metabolic variables and testosterone were measured from fasting venous blood samples. Retinal vascular calibre was quantified from digital photographs using standardised protocols. RESULTS The black men revealed a poorer cardiometabolic profile and higher pulsatile pressure (>50 mm Hg), intraocular pressure and diastolic ocular perfusion pressure than the white men (p≤0.05). Only in the white men was free testosterone positively associated with retinal calibre, i.e. arterio-venular ratio and central retinal arterial calibre and inversely with central retinal venular calibre. These associations were not found in the black men, independent of whether pulse pressure and ocular perfusion pressure were part of the model. CONCLUSIONS These results suggest an independent, protective effect of testosterone on the retinal vasculature where an apparent vasodilatory response in the retinal resistance microvessels was observed in white men.
Resumo:
Rhinoviruses (RVs) are associated with exacerbations of cystic fibrosis (CF), asthma and COPD. There is growing evidence suggesting the involvement of the interferon (IFN) pathway in RV-associated morbidity in asthma and COPD. The mechanisms of RV-triggered exacerbations in CF are poorly understood. In a pilot study, we assessed the antiviral response of CF and healthy bronchial epithelial cells (BECs) to RV infection, we measured the levels of IFNs, pattern recognition receptors (PRRs) and IFN-stimulated genes (ISGs) upon infection with major and minor group RVs and poly(IC) stimulation. Major group RV infection of CF BECs resulted in a trend towards a diminished IFN response at the level of IFNs, PRRs and ISGs in comparison to healthy BECs. Contrary to major group RV, the IFN pathway induction upon minor group RV infection was significantly increased at the level of IFNs and PRRs in CF BECs compared to healthy BECs.
Resumo:
Purpose To this day, the slit lamp remains the first tool used by an ophthalmologist to examine patient eyes. Imaging of the retina poses, however, a variety of problems, namely a shallow depth of focus, reflections from the optical system, a small field of view and non-uniform illumination. For ophthalmologists, the use of slit lamp images for documentation and analysis purposes, however, remains extremely challenging due to large image artifacts. For this reason, we propose an automatic retinal slit lamp video mosaicking, which enlarges the field of view and reduces amount of noise and reflections, thus enhancing image quality. Methods Our method is composed of three parts: (i) viable content segmentation, (ii) global registration and (iii) image blending. Frame content is segmented using gradient boosting with custom pixel-wise features. Speeded-up robust features are used for finding pair-wise translations between frames with robust random sample consensus estimation and graph-based simultaneous localization and mapping for global bundle adjustment. Foreground-aware blending based on feathering merges video frames into comprehensive mosaics. Results Foreground is segmented successfully with an area under the curve of the receiver operating characteristic curve of 0.9557. Mosaicking results and state-of-the-art methods were compared and rated by ophthalmologists showing a strong preference for a large field of view provided by our method. Conclusions The proposed method for global registration of retinal slit lamp images of the retina into comprehensive mosaics improves over state-of-the-art methods and is preferred qualitatively.
Resumo:
PURPOSE To identify individual retinal layer thickness changes associated with visual acuity gain in diabetic macular edema treated with ranibizumab using layer segmentation on high-resolution optical coherence tomography scans. METHODS Retrospective observational case series. Thirty-three treatment-naive eyes with diabetic macular edema were imaged by spectral domain optical coherence tomography at monthly visits while receiving intravitreal ranibizumab treatment as needed, guided by visual acuity. Thickness changes of individual layers after 1 year were quantitatively analyzed and correlated with visual acuity gain. RESULTS The mean best-corrected visual acuity improvement at 1 year was 6.2 (SEM ± 1.5) Early Treatment Diabetic Retinopathy Study letters, and central retinal thickness decreased by 66 ± 18 μm. In the central subfield, there was a significant decrease of thickness for all layers (P < 0.05) except the outer nuclear layer. Multiple linear regression analysis revealed that thickness decrease of the inner retina was associated with better visual acuity, whereas for the outer retina the opposite was true. The best estimate of final visual acuity (R = 0.817, P < 0.001) was obtained, by including baseline visual acuity and thickness change of the inner and outer plexiform layers in the model. CONCLUSION Whereas thickness decrease of the inner retina was positively associated with visual acuity gain, the opposite was found for the outer retina. This might be indirect evidence for recovery of the outer retina during ranibizumab treatment.This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially.
Resumo:
The development of Soppensee (Central Switzerland, 596 m a.s.l.) has been reconstructed using algal remains such as diatoms, chlorophytes and fossil pigments, as well as the pollen and spores of macrophytes. Sediment accumulation in Soppensee began at the end of the last glacial period, approximately 15,000 yrs ago. During the Oldest Dryas biozone (> 12,700 radiocarbon yrs B.P.) the lake had low primary productivity. After reforestation with birch and later pine, around 12,700 B.P., phases of summer anoxia occurred in the lake. These anoxic conditions were most probably caused by additional carbon input from the catchment, as well as longer phases of stratification due to reduced wind exposure caused by the sheltering effect of increased tree cover. From the Younger Dryas biozone (10,800 to 10,000 radiocarbon yrs B.P.) onwards, Soppensee became meromictic for several millennia.
Resumo:
Five years (1979-1983) of Coastal Zone Color Scanner satellite ocean color data are used to examine seasonal patterns of phytoplankton pigment concentration along the Chilean coast from 20 degrees S to 45 degrees S. Four kilometer resolution, 2-4 day composites document the presence of filaments of elevated pigment concentration extending offshore throughout the study area, with maximum offshore extension at higher latitudes. In three years, 1979, 1981, and 1983, sufficient data exist in monthly composites to allow recreation of portions of the seasonal cycle. Data in 1979 are the most complete. Near-shore concentrations and cross-shelf extension of pigment concentrations in 1979 are maximum in austral winter throughout the study area and minimum in summer. Available data from 1981 and 1983 are consistent with this temporal pattern but with concentrations approximately double those of 1979. Seasonal, spatial patterns within 10 km of shore and 50 km offshore indicate a latitudinal discontinuity both in absolute concentration and in the magnitude of the seasonal cycle at approximately 33 degrees S in both 1979 and in the climatological time series. The discontinuity is strongest ill fall-winter and weakest in summer. South of this latitude, concentrations are relatively high (2-3 mg m(-3) in 1979), a strong seasonal cycle is present, and patterns 50 km offshore are correlated with those within 10 km of shore. North of 33 degrees S, concentrations are < 1.5 mg m(-3) (in 1979), and the seasonal cycle within 10 km of shore is present but much weaker and less obviously correlated with that 50 km offshore. The seasonal cycle of pigment concentrations is 180 degrees out of phase with monthly averaged upwelling favorable winds. Noncoincident Pathfinder sea surface temperature data show that over most latitudes, coastal low surface temperatures lag wind forcing by 1-2 months, but these too are out of phase with the pigment seasonal cycle. These data point to control of pigment patterns along the Chilean coast by the interaction of upwelling with circulation patterns unconnected to local wind forcing.
Resumo:
Retinal detachment is a common ophthalmologic procedure, and outcome is typically measured by a single factor-improvement in visual acuity. Health related functional outcome testing, which quantifies patient's self-reported perception of impairment, can be integrated with objective clinical findings. Based on the patient's self-assessed lifestyle impairment, the physician and patient together can make an informed decision on the treatment that is most likely to benefit the patient. ^ A functional outcome test (the Houston Vision Assessment Test-Retina; HVAT-Retina) was developed and validated in patients with multiple retinal detachments in the same eye. The HVAT-Retina divides an estimated total impairment into subcomponents: contribution of visual disability (potentially correctable by retinal detachment surgery) and nonvisual physical disabilities (co-morbidities not affected by retinal detachment surgery. ^ Seventy-six patients participated in this prospective multicenter study. Seven patients were excluded from the analysis because they were not certain of their answers. Cronbach's alpha coefficient was 0.91 for presurgery HVAT-Retina and 0.94 post-surgery. The item-to-total correlation ranged from 0.50 to 0.88. Visual impairment score improved by 9 points from pre-surgery (p = 0.0003). Physical impairment score also improved from pre-surgery (p = 0.0002). ^ In conclusion, the results of this study demonstrate that the instrument is reliable and valid in patients presenting with recurrent retinal detachments. The HVAT-Retina is a simple instrument and does not burden the patient or the health professional in terms of time or cost. It may be self-administrated, not requiring an interviewer. Because the HVAT-Retina was designed to demonstrate outcomes perceivable by the patient, it has the potential to guide the decision making process between patient and physician. ^
Resumo:
Complex molecular events underlie vertebrate eye development and disease. The eye is composed of two major tissue types: the anterior and posterior segments. During development, the retinal progenitor cells differentiate into six neuronal and one non-neuronal cell types. These cell types later organize into the distinct laminar structure of the mature retina which occupies the posterior segment. In the developed anterior segment, both the ciliary body and trabecular meshwork regulate intraocular pressure created by the aqueous humor. The disruption in intraocular pressure can lead to a blinding condition called glaucoma. To characterize molecular mechanisms governing retinal development and glaucoma, two separate mouse knockout lines carrying mutations in math5 and myocilin were subjected to a series of in vivo analyses. ^ Math5 is a murine homologue of Drosophila atonal , a bHLH proneural gene essential for the formation of photoreceptor cells. The expression of math5 coincides with the onset of retinal ganglion cell differentiation. The targeted deletion of mouse math5 revealed that a null mutation inhibits the formation of a majority of the retinal ganglion cells. The mutation also interferes with the normal development of other retinal cell types such as amacrine, bipolar and photoreceptor cells. These results suggest that math5 is a proneural gene responsible for differentiation of retinal ganglion cells and may also have a role in normal development of other neuronal cell types within the retina. ^ Myocilin has two unique protein coding regions bearing homology to non-muscle myosin of Dictyostelium discoideum and to olfactomedin, an extracellular matrix molecule first described in the olfactory epithelium of the bullfrog. Recently, autosomal dominant forms of myocilin mutations have been found in individuals with primary open-angle glaucoma. The genetic linkage to glaucoma suggests a role of myocilin in normal intraocular pressure and ocular function. However, the analysis of mice heterozygous and homozygous for a targeted null mutation in myocilin indicates that it is dispensable for normal intraocular pressure or ocular function. Additionally, the lack of a discernable phenotype in both heterozygous and null mice suggests that haploinsufficiency is not a critical mechanism for MYOC-associated glaucoma in humans. Instead, disease-causing mutations likely act by gain of function. ^ In summary, these studies provide novel insights into the embryonic development of the vertebrate retina, and also begin to uncover the molecular mechanisms responsible for the pathogenesis of glaucoma. ^
Resumo:
A number of tight urinary epithelia, as exemplified by the turtle bladder, acidify the luminal solution by active transport of H+ across the luminal cell membrane. The rate of active H+ transport (JH) decreases as the electrochemical potential difference for H+ [delta mu H = mu H(lumen) - mu H(serosa)] across the epithelium is increased. The luminal cell membrane has a low permeability for H+ equivalents and a high electrical resistance compared with the basolateral cell membrane. Changes in JH thus reflect changes in active H+ transport across the luminal membrane. To examine the control of JH by delta mu H in the turtle bladder, transepithelial electrical potential differences (delta psi) were imposed at constant acid-base conditions or the luminal pH was varied at delta psi = 0 and constant serosal PCO2 and pH. When the luminal compartment was acidified from pH 7 to 4 or was made electrically positive, JH decreased as a linear function of delta mu H as previously described. When the luminal compartment was made alkaline from pH 7 to 9 or was made electrically negative, JH reached a maximal value, which was the same whether the delta mu H was imposed as a delta pH or a delta psi. The nonlinear JH vs. delta mu H relation does not result from changes in the number of pumps in the luminal membrane or from changes in the intracellular pH, but is a characteristic of the H+ pumps themselves. We propose a general scheme, which, because of its structural features, can account for the nonlinearity of the JH vs. delta mu H relations and, more specifically, for the kinetic equivalence of the effects of the chemical and electrical components of delta mu H. According to this model, the pump complex consists of two components: a catalytic unit at the cytoplasmic side of the luminal membrane, which mediates the ATP-driven H+ translocation, and a transmembrane channel, which mediates the transfer of H+ from the catalytic unit to the luminal solution. These two components may be linked through a buffer compartment for H+ (an antechamber).