866 resultados para repetition tunable


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report here a multiple-nitrile based lithium-salt liquid electrolyte. The ionic conductivity of poly (propyl ether imine) (abbreviated as PETIM) lithium salt dendrimer liquid electrolyte was observed to be a function of dendrimer generation number, n=0 (monomer)-3. While the highest room temperature ionic conductivity value (similar to 10(-1) Sm-1) was recorded for the bis-2cyanoethyl ether monomer (i.e. zeroth generation; G(0)-CN), conductivity decreased progressively to lower values (similar to 10(-3) Sm-1) with increase in generation number (G(1)-CN -> G(3)-CN). The G(0)-CN and higher dendrimer generations showed high thermal stability (approximate to 150 to 200 degrees C), low moisture sensitivity and tunable viscosity (similar to 10(-2) (G(0)-CN) to 3 (G(3)-CN) Pa s). The linker ether group was found to be crucial for ion transport and also eliminated a large number of detrimental features, chiefly moisture sensitivity, chemical instability associated typically with prevalent molecular liquid solvents. Based on the combination of several beneficial physicochemical properties, we presently envisage that the PETIM dendrimers especially the G(0)-CN electrolytes hold promise as electrolytes in electrochemical devices such as lithium-ion batteries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we observe gate tunable negative differential conductance (NDC) and current saturation in single layer and bilayer graphene transistor at high source-drain field, which arise due to the interplay among (1) self-heating, (2) hot carrier injection, and (3) drain induced minority carrier injection. The magnitude of the NDC is found to be reduced for a bilayer, in agreement with its weaker carrier-optical phonon coupling and less efficient hot carrier injection. The contributions of different mechanisms to the observed results are decoupled through fast transient measurements with nanosecond resolution. The findings provide insights into high field transport in graphene. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4754103]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In graphene, the valleys represent spinlike quantities and can act as a physical resource in valley-based electronics to produce novel quantum computation schemes. Here we demonstrate a direct route to tune and read the valley quantum states of disordered graphene by measuring the mesoscopic conductance fluctuations. We show that the conductance fluctuations in graphene at low temperatures are reduced by a factor of 4 when valley triplet states are gapped in the presence of short-range potential scatterers at high carrier densities. We also show that this implies a gate tunable universal symmetry class that outlines a fundamental feature arising from graphene's unique crystal structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel weakly ordered chiral lyotropic alignment medium, derived by the self-assembly of guanosine 5'-monophosphate (5'-GMP) : guanosine for scaling RDCs to desired strengths and for the discrimination of enantiomers, is reported. The preparation of this inexpensive mesophase is straightforward, requires less time (1 h), and is sustainable, reversible and tunable over a wide range of temperature (280-330 K) and concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proton-conducting materials are an important component of fuel cells. Development of new types of proton-conducting materials is one of the most important issues in fuel-cell technology. Herein, we present newly developed proton-conducting materials, modularly built porous solids, including coordination polymers (CPs) or metalorganic frameworks (MOFs). The designable and tunable nature of the porous materials allows for fast development in this research field. Design and synthesis of the new types of proton-conducting materials and their unique proton-conduction properties are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of molecular shape and position of hydrogen bonding functionality in the solid state structural self-assembly was investigated using diaminotriazine substituted diphenyl ether based positional isomers (1-5). The molecular shape was modulated by changing diaminotriazine position that produced channel supramolecular structures in 1, 3 and 5. There exists a direct correlation between the molecular shape and three dimensional structures; more linear molecules resulted in close-packing whereas molecules with a labyrinthine topology formed a channel structure. Supramolecular aspects pertaining to the influence of solvent of crystallization in structure formation and reversible structural transformation in solid state were also explored. 1-5 exhibited tunable solid state fluorescence (lambda(max) = 437-496 nm) depending on the diaminotriazine substitutional position and 3 showed solvent-dependent solid state fluorescence. The present study describes the generation of a supramolecular channel structure with functional properties such as tunable fluorescence by varying the position of hydrogen bond functionality and solvent of crystallization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical straight waveguides are inscribed in GeGaS and GeGaSSb glasses using a high repetition-rate sub-picosecond laser. The mechanical properties of the glasses in the inscribed regions, which have undergone photo induced changes, have been evaluated by using the nanoindentation technique. Results show that the hardness and elastic modulus of the photo-modified glasses are significantly lower as compared to the other locations in the waveguide, which tend to be similar to those of the unexposed areas. The observed mechanical effects are found to correlate well with the optical properties of the waveguides. Further, based on the results, the minimum threshold values of hardness and elastic modulus for the particular propagation mode of the waveguide (single or multi), has been established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combining the electronic properties of graphene(1,2) and molybdenum disulphide (MoS2)(3-6) in hybrid heterostructures offers the possibility to create devices with various functionalities. Electronic logic and memory devices have already been constructed from graphene-MoS2 hybrids(7,8), but they do not make use of the photosensitivity of MoS2, which arises from its optical-range bandgap(9). Here, we demonstrate that graphene-on-MoS2 binary heterostructures display remarkable dual optoelectronic functionality, including highly sensitive photodetection and gate-tunable persistent photoconductivity. The responsivity of the hybrids was found to be nearly 1 x 10(10) A W-1 at 130 K and 5 x 10(8) A W-1 at room temperature, making them the most sensitive graphene-based photodetectors. When subjected to time-dependent photoillumination, the hybrids could also function as a rewritable optoelectronic switch or memory, where the persistent state shows almost no relaxation or decay within experimental timescales, indicating near-perfect charge retention. These effects can be quantitatively explained by gate-tunable charge exchange between the graphene and MoS2 layers, and may lead to new graphene-based optoelectronic devices that are naturally scalable for large-area applications at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semiconductor nanocrystals of different formulations have been extensively studied for use in thin-film photovoltaics. Materials used in such devices need to satisfy the stringent requirement of having large absorption cross sections. Hence, type-II semiconductor nanocrystals that are generally considered to be poor light absorbers have largely been ignored. In this article, we show that type-II semiconductor nanocrystals can be tailored to match the light-absorption abilities of other types of nanostructures as well as bulk semiconductors. We synthesize type-II ZnTe/CdS core/shell nanocrystals. This material is found to exhibit a tunable band gap as well as absorption cross sections that are comparable to (die. This result has significant implications for thin-film photovoltaics, where the use of type-II nanocrystals instead of pure semiconductors can improve charge separation while also providing a much needed handle to regulate device composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tunable optical properties of the bulk structure of carbon nanotubes (CNT) were recently revealed as a perfect black body material, optically reflective mirror and solar absorber. The present study demonstrates an enhanced optical reflectance of up to similar to 15% over a broad wavelength range in the near infrared region followed by a mechanical modification of the surface of a bulk CNT structure, which can be accounted for due to the grating-like surface abnormalities. In response to the specific arrangement of the so-formed bent tips of the CNT, a selective reflectance is achieved and results in reflecting only a dominant component of the polarized ight, which has not been realized so far. Modulation of this selective-optical reflectance can be achieved by ontrolling the degree of tip bending of the nanotubes, thus opening up avenues for the construction of novel dynamic light polarizers and absorbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface chemistry and the intrinsic porous architectures of porous substrates play a major role in the design of drug delivery systems. An interesting example is the drug elution characteristic from hydrothermally synthesised titania nanotubes with tunable surface chemistry. The variation in release rates of Ibuprofen (IBU) is largely influenced by the nature of the functional groups on titania nanotubes and pH of suspending medium. To elucidate the extent of interaction between the encapsulated IBU and the functional groups on titania nanotubes, the release profiles have been modelled with an empirical Hill equation. The analysis aided in establishing a probable mechanism for the release of IBU from the titania nanotubes. The study of controlled drug release from TiO2 has wider implication in the context of biomedical engineering. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although semiconductor quantum dots are promising materials for displays and lighting due to their tunable emissions, these materials also suffer from the serious disadvantage of self-absorption of emitted light. The reabsorption of emitted light is a serious loss mechanism in practical situations because most phosphors exhibit subunity quantum yields. Manganese-based phosphors that also exhibit high stability and quantum efficiency do not suffer from this problem but in turn lack emission tunability, seriously affecting their practical utility. Here, we present a class of manganese-doped quantum dot materials, where strain is used to tune the wavelength of the dopant emission, extending the otherwise limited emission tunability over the yellow-orange range for manganese ions to almost the entire visible spectrum covering all colors from blue to red. These new materials thus combine the advantages of both quantum dots and conventional doped phosphors, thereby opening new possibilities for a wide range of applications in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with different surface-functionalized multiwall carbon nanotubes (MWNTs) were prepared by solution blending to design materials with tunable EMI (electromagnetic interference) shielding. Different MWNTs like pristine, amine (similar to NH2), and carboxyl acid (similar to COOH) functionalized were incorporated in the polymer by solution blending. The specific interaction driven localization of MWNTs in the blend during annealing was monitored using contact mode AFM (atomic force microscopy) on thin films. Surface composition of the phase separated blends was further evaluated using X-ray photoelectron spectroscopy (XPS). The localization of MWNTs in a given phase in the bulk was further supported by selective dissolution experiments. Solution-casted PS/PMMA (50/50, wt/wt) blend exhibited a cocontinuous morphology on annealing for 30 min, whereas on longer annealing times it coarsened into matrix-droplet type of morphology. Interestingly, both pristine MWNTs and NH2-MWNTs resulted in interconnected structures of PMMA in PS matrix upon annealing, whereas COOH-MWNTs were localized in the PMMA droplets. Room-temperature electrical conductivity and electromagnetic shielding effectiveness (SE) were measured in a broad range of frequency. It was observed that both electrical conductivity and SE were strongly contingent on the type of surface functional groups on the MWNTs. The thermal conductivity of the blends was measured with laser flash technique at different temperatures. Interestingly, the SE for blends with pristine and NH2-MWNTs was >-24 dB at room temperature, which is commercially important, and with very marginal variation in thermal conductivity in the temperature range of 303-343 K. The gelation of MWNTs in the blends resulted in a higher SE than those obtained using the composites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendrimers are highly branched polymeric nanoparticles whose structure and topology, largely, have determined their efficacy in a wide range of studies performed so far. An area of immense interest is their potential as drug and gene delivery vectors. Realizing this potential, depending on the nature of cell surface-dendrimer interactions, here we report controlled model membrane penetration and reorganization, using a model supported lipid bilayer and poly(ether imine) (PETIM) dendrimers of two generations. By systematically varying the areal density of the lipid bilayers, we provide a microscopic insight, through a combination of high resolution scattering, atomic force microscopy and atomistic molecular dynamics simulations, into the mechanism of PETIM dendrimer membrane penetration, pore formation and membrane re-organization induced by such interactions. Our work represents the first systematic observation of a regular barrel-like membrane spanning pore formation by dendrimers, tunable through lipid bilayer packing, without membrane disruption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline titania are a robust candidate for various functional applications owing to its non-toxicity, cheap availability, ease of preparation and exceptional photochemical as well as thermal stability. The uniqueness in each lattice structure of titania leads to multifaceted physico-chemical and opto-electronic properties, which yield different functionalities and thus influence their performances in various green energy applications. The high temperature treatment for crystallizing titania triggers inevitable particle growth and the destruction of delicate nanostructural features. Thus, the preparation of crystalline titania with tunable phase/particle size/morphology at low to moderate temperatures using a solution-based approach has paved the way for further exciting areas of research. In this focused review, titania synthesis from hydrothermal/solvothermal method, conventional sol-gel method and sol-gel-assisted method via ultrasonication, photoillumination and ILs, thermolysis and microemulsion routes are discussed. These wet chemical methods have broader visibility, since multiple reaction parameters, such as precursor chemistry, surfactants, chelating agents, solvents, mineralizer, pH of the solution, aging time, reaction temperature/time, inorganic electrolytes, can be easily manipulated to tune the final physical structure. This review sheds light on the stabilization/phase transformation pathways of titania polymorphs like anatase, rutile, brookite and TiO2(B) under a variety of reaction conditions. The driving force for crystallization arising from complex species in solution coupled with pH of the solution and ion species facilitating the orientation of octahedral resulting in a crystalline phase are reviewed in detail. In addition to titanium halide/alkoxide, the nucleation of titania from other precursors like peroxo and layered titanates are also discussed. The nonaqueous route and ball milling-induced titania transformation is briefly outlined; moreover, the lacunae in understanding the concepts and future prospects in this exciting field are suggested.