944 resultados para reaction mechanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their large surface area, complex chemical composition and high alveolar deposition rate, ultrafine particles (UFPs) (< 0.1 ìm) pose a significant risk to human health and their toxicological effects have been acknowledged by the World Health Organisation. Since people spend most of their time indoors, there is a growing concern about the UFPs present in some indoor environments. Recent studies have shown that office machines, in particular laser printers, are a significant indoor source of UFPs. The majority of printer-generated UFPs are organic carbon and it is unlikely that these particles are emitted directly from the printer or its supplies (such as paper and toner powder). Thus, it was hypothesised that these UFPs are secondary organic aerosols (SOA). Considering the widespread use of printers and human exposure to these particles, understanding the processes involved in particle formation is of critical importance. However, few studies have investigated the nature (e.g. volatility, hygroscopicity, composition, size distribution and mixing state) and formation mechanisms of these particles. In order to address this gap in scientific knowledge, a comprehensive study including state-of-art instrumental methods was conducted to characterise the real-time emissions from modern commercial laser printers, including particles, volatile organic compounds (VOCs) and ozone (O3). The morphology, elemental composition, volatility and hygroscopicity of generated particles were also examined. The large set of experimental results was analysed and interpreted to provide insight into: (1) Emissions profiles of laser printers: The results showed that UFPs dominated the number concentrations of generated particles, with a quasi unimodal size distribution observed for all tests. These particles were volatile, non-hygroscopic and mixed both externally and internally. Particle microanalysis indicated that semi-volatile organic compounds occupied the dominant fraction of these particles, with only trace quantities of particles containing Ca and Fe. Furthermore, almost all laser printers tested in this study emitted measurable concentrations of VOCs and O3. A positive correlation between submicron particles and O3 concentrations, as well as a contrasting negative correlation between submicron particles and total VOC concentrations were observed during printing for all tests. These results proved that UFPs generated from laser printers are mainly SOAs. (2) Sources and precursors of generated particles: In order to identify the possible particle sources, particle formation potentials of both the printer components (e.g. fuser roller and lubricant oil) and supplies (e.g. paper and toner powder) were investigated using furnace tests. The VOCs emitted during the experiments were sampled and identified to provide information about particle precursors. The results suggested that all of the tested materials had the potential to generate particles upon heating. Nine unsaturated VOCs were identified from the emissions produced by paper and toner, which may contribute to the formation of UFPs through oxidation reactions with ozone. (3) Factors influencing the particle emission: The factors influencing particle emissions were also investigated by comparing two popular laser printers, one showing particle emissions three orders of magnitude higher than the other. The effects of toner coverage, printing history, type of paper and toner, and working temperature of the fuser roller on particle number emissions were examined. The results showed that the temperature of the fuser roller was a key factor driving the emission of particles. Based on the results for 30 different types of laser printers, a systematic positive correlation was observed between temperature and particle number emissions for printers that used the same heating technology and had a similar structure and fuser material. It was also found that temperature fluctuations were associated with intense bursts of particles and therefore, they may have impact on the particle emissions. Furthermore, the results indicated that the type of paper and toner powder contributed to particle emissions, while no apparent relationship was observed between toner coverage and levels of submicron particles. (4) Mechanisms of SOA formation, growth and ageing: The overall hypothesis that UFPs are formed by reactions with the VOCs and O3 emitted from laser printers was examined. The results proved this hypothesis and suggested that O3 may also play a role in particle ageing. In addition, knowledge about the mixing state of generated particles was utilised to explore the detailed processes of particle formation for different printing scenarios, including warm-up, normal printing, and printing without toner. The results indicated that polymerisation may have occurred on the surface of the generated particles to produce thermoplastic polymers, which may account for the expandable characteristics of some particles. Furthermore, toner and other particle residues on the idling belt from previous print jobs were a very clear contributing factor in the formation of laser printer-emitted particles. In summary, this study not only improves scientific understanding of the nature of printer-generated particles, but also provides significant insight into the formation and ageing mechanisms of SOAs in the indoor environment. The outcomes will also be beneficial to governments, industry and individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrocalumite (CaAl-LDH-Cl) were synthesized through a rehydration method involving a freshly prepared tricalcium aluminate (C3A) with CaCl2 solution. To understand the intercalation behaviour of sodium dodecylsulfate (SDS) with CaAl-LDH-Cl, X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-atomic emission spectrometer (ICP) and elemental analysis have been undertaken. The sorption isotherms with SDS reveal that the maximum sorption amount of SDS by CaAl-LDH-Cl could reach 3.67 mmol•g-1. The results revealed that CaAl-LDH-Cl holds a self-dissolution property, about 20-30% of which is dissolved. And the dissolved Ca2+, Al3+ ions are combined with SDS to form CaAl-SDS or Ca-SDS precipitation. It has been highlighted that the composition of resulting products is strongly dependent upon the SDS concentration. With increasing SDS concentrations, the main resulting product changes from CaAl-SDS to Ca-SDS, and the value of interlayer spacing increased to 3.27 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulatory commentators have identified the need for more responsive regulation to allow enforcement agencies to respond to different types and degrees of non-compliance. One tool considered to support responsive enforcement is the Enforceable Undertaking (EU). EUs are used extensively by Australian regulators in decisions that forego litigation in exchange for offenders promising to (amongst other things) correct behaviour and comply in the future. This arguably allows regulatory agencies greater flexibility in how they obtain compliance with regulations. EUs became an additional enforcement tool for the Fair Work Ombudsman (FWO) under the Fair Work Act 2009. This paper is a preliminary exploration of the comparative use of EUs by the Australian Competition and Consumer Commission and the FWO to assess their effectiveness for the minimum labour standards' environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermogravimetry combined with evolved gas mass spectrometry has been used to characterise the mineral crandallite CaAl3(PO4)2(OH)5•(H2O) and to ascertain the thermal stability of this ‘cave’ mineral. X-ray diffraction proves the presence of the mineral and identifies the products after thermal decomposition. The mineral crandallite is formed through the reaction of calcite with bat guano. Thermal analysis shows that the mineral starts to decompose through dehydration at low temperatures at around 139°C while dehydroxylation occurs over the temperature range 200 to 700°C with loss of OH units. The critical temperature for OH loss is around 416°C and above this temperature the mineral structure is altered. Some minor loss of carbonate impurity occurs at 788°C. This study shows the mineral is unstable above 139°C. This temperature is well above the temperature in caves, which have a maximum temperature of 15°C. A chemical reaction for the synthesis of crandallite is offered and the mechanism for the thermal decomposition is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of the Australian Government’s Clean Energy Plan, the Government has attempted to harness the legal innovation of the tradeable emissions unit, within a capped carbon trading system, to reduce greenhouse gas emissions. Such an approach promises to send a price signal to the market which will influence emitting behaviours and reduce our emissions in a cost-effective manner. However, if the carbon trading scheme is to successfully achieve cost-effective emissions reductions then the carbon market must be supported by an appropriate legal framework. This paper will consider the key features of the Australian Carbon Pricing Mechanism, including the Carbon Farming Initiative, and critique whether it has all the hallmarks of an effective legal framework to reduce Australia’s net greenhouse gas emissions. The likely future of the trading scheme, following the 2013 elections, will also be addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report on many phosphate containing natural minerals found in the Jenolan Caves - Australia. Such minerals are formed by the reaction of bat guano and clays from the caves. Among these cave minerals is the montgomeryite mineral [Ca4MgAl4(PO4)6.(OH)4.12H2O]. The presence of montgomeryite in deposits of the Jenolan Caves - Australia has been identified by X-ray diffraction (XRD). Raman spectroscopy complimented with infrared spectroscopy has been used to characterize the crystal structure of montgomeryite. The Raman spectrum of a standard montgomeryite mineral is identical to that of the Jenolan Caves sample. Bands are assigned to H2PO4-, OH and NH stretching vibrations. By using a combination of XRD and Raman spectroscopy, the existence of montgomeryite in the Jenolan Caves - Australia has been proven. A mechanism for the formation of montgomeryite is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With new photocatalysts of gold nanoparticles supported on zeolite supports (Au/zeolite), oxidation of benzyl alcohol and its derivatives into the corresponding aldehydes can proceed well with a high selectivity (99%) under visible light irradiation at ambient temperature. Au/zeolite photocatalysts were characterized by UV/Vis, XPS, TEM, XRD, EDS, BET, IR, and Raman techniques. The Surface Plasmon Resonance (SPR) effect of gold nanoparticles, the adsorption capability of zeolite supports, and the molecular polarities of aromatic alcohols were demonstrated to have an essential correlation with the photocatalytic performances. In addition, the effects of light intensity, wavelength range, and the role of molecular oxygen were investigated in detail. The kinetic study indicated that the visible light irradiation required much less apparent activation energy for photooxidation compared with thermal reaction. Based on the characterization data and the photocatalytic performances, we proposed a possible photooxidation mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the recent past, there are some social issues when personal sensitive data in medical database were exposed. The personal sensitive data should be protected and access must be accounted for. Protecting the sensitive information is possible by encrypting such information. The challenge is querying the encrypted information when making the decision. Encrypted query is practically somewhat tedious task. So we present the more effective method using bucket index and bloom filter technology. We find that our proposed method shows low memory and fast efficiency comparatively. Simulation approaches on data encryption techniques to improve health care decision making processes are presented in this paper as a case scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional differential equations are becoming more widely accepted as a powerful tool in modelling anomalous diffusion, which is exhibited by various materials and processes. Recently, researchers have suggested that rather than using constant order fractional operators, some processes are more accurately modelled using fractional orders that vary with time and/or space. In this paper we develop computationally efficient techniques for solving time-variable-order time-space fractional reaction-diffusion equations (tsfrde) using the finite difference scheme. We adopt the Coimbra variable order time fractional operator and variable order fractional Laplacian operator in space where both orders are functions of time. Because the fractional operator is nonlocal, it is challenging to efficiently deal with its long range dependence when using classical numerical techniques to solve such equations. The novelty of our method is that the numerical solution of the time-variable-order tsfrde is written in terms of a matrix function vector product at each time step. This product is approximated efficiently by the Lanczos method, which is a powerful iterative technique for approximating the action of a matrix function by projecting onto a Krylov subspace. Furthermore an adaptive preconditioner is constructed that dramatically reduces the size of the required Krylov subspaces and hence the overall computational cost. Numerical examples, including the variable-order fractional Fisher equation, are presented to demonstrate the accuracy and efficiency of the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last decade, Ionic Liquids (ILs) have been used for the dissolution and derivatization of isolated cellulose. This ability of ILs is now sought for their application in the selective dissolution of cellulose from lignocellulosic biomass, for the manufacture of cellulosic ethanol. However, there are significant knowledge gaps in the understanding of the chemistry of the interaction of biomass and ILs. While imidazolium ILs have been used successfully to dissolve both isolated crystalline cellulose and components of lignocellulosic biomass, phosphonium ILs have not been sufficiently explored for the use in dissolution of lignocellulosic biomass. This thesis reports on the study of the chemistry of sugarcane bagasse with phosphonium ILs. Qualitative and quantitative measurements of biomass components dissolved in the phosphonium ionic liquids (ILs), trihexyltetradecylphosphonium chloride ([P66614]Cl) and tributylmethylphosphonium methylsulphate ([P4441]MeSO4) are obtained using attenuated total reflectance-Fourier Transform Infra Red (FTIR). Absorption bands related to cellulose, hemicelluloses and lignin dissolution monitored in situ in biomass-IL mixtures indicate lignin dissolution in both ILs and some holocellulose dissolution in the hydrophilic [P4441]MeSO4. The kinetics of lignin dissolution reported here indicate that while dissolution in the hydrophobic IL [P66614]Cl appears to follow an accepted mechanism of acid catalysed β-aryl ether cleavage, dissolution in the hydrophilic IL [P4441]MeSO4 does not appear to follow this mechanism and may not be followed by condensation reactions (initiated by reactive ketones). The quantitative measurement of lignin dissolution in phosphonium ILs based on absorbance at 1510 cm-1 has demonstrated utility and greater precision than the conventional Klason lignin method. The cleavage of lignin β-aryl ether bonds in sugarcane bagasse by the ionic liquid [P66614]Cl, in the presence of catalytic amounts of mineral acid. (ca. 0.4 %). The delignification process of bagasse is studied over a range of temperatures (120 °C to 150 °C) by monitoring the production of β-ketones (indicative of cleavage of β-aryl ethers) using FTIR spectroscopy and by compositional analysis of the undissolved fractions. Maximum delignification is obtained at 150 °C, with 52 % of lignin removed from the original lignin content of bagasse. No delignification is observed in the absence of acid which suggests that the reaction is acid catalysed with the IL solubilising the lignin fragments. The rate of delignification was significantly higher at 150 °C, suggesting that crossing the glass transition temperature of lignin effects greater freedom of rotation about the propanoid carbon-carbon bonds and leads to increased cleavage of β-aryl ethers. An attempt has been made to propose a probable mechanism of delignifcation of bagasse with the phosphonuim IL. All polymeric components of bagasse, a lignocellulosic biomass, dissolve in the hydrophilic ionic liquid (IL) tributylmethylphosphonium methylsulfate ([P4441]MeSO4) with and without a catalytic amount of acid (H2SO4, ca. 0.4 %). The presence of acid significantly increases the extent of dissolution of bagasse in [P4441]MeSO4 (by ca. 2.5 times under conditions used here). The dissolved fractions can be partially recovered by the addition of an antisolvent (water) and are significantly enriched in lignin. Unlike acid catalysed dissolution in the hydrophobic IL tetradecyltrihexylphosphonium chloride there is little evidence of cleavage of β-aryl ether bonds of lignin dissolving in [P4441]MeSO4 (with and without acid), but this mechanism may play some role in the acid catalysed dissolution. The XRD of the undissolved fractions suggests that the IL may selectively dissolve the amorphous cellulose component, leaving behind crystalline material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The draft of the first stage of the national curriculum has now been published. Its final form to be presented in December 2010 should be the centrepiece of Labor’s Educational Revolution. All the other aspects – personal computers, new school buildings, rebates for uniforms and even the MySchool report card – are marginal to the prescription of what is to be taught and learnt in schools. The seven authors in this journal’s Point and Counterpoint (Curriculum Perspectives, 30(1) 2010, pp.53-74) raise a number of both large and small issues in education as a whole, and in science education more particularly. Two of them (Groves and McGarry) make brief reference to earlier attempts to achieve national curriculum in Australia. Those writing from New Zealand and USA will be unaware of just how ambitious this project is for Australia - a bold and overdue educational adventure or a foolish political decision destined to failure, as happened in the later 1970s and the 1990s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Qualitative and quantitative measurements of biomass components dissolved in the phosphonium ionic liquids (ILs), trihexyltetradecylphosphonium chloride ([P66614]Cl) and tributylmethylphosphonium methylsulphate ([P4441]MeSO 4), are obtained using attenuated total reflectance-FTIR. Absorption bands related to cellulose, hemicelluloses, and lignin dissolution monitored in situ in biomass-IL mixtures indicate lignin dissolution in both ILs and some holocellulose dissolution in the hydrophilic [P4441]MeSO 4. The kinetics of lignin dissolution reported here indicate that while dissolution in the hydrophobic IL [P66614]Cl appears to follow an accepted mechanism of acid catalyzed -aryl ether cleavage, dissolution in the hydrophilic IL [P4441]MeSO 4 does not appear to follow this mechanism and may not be followed by condensation reactions (initiated by reactive ketones). The measurement of lignin dissolution in phosphonium ILs based on absorbance at 1510 cm 1 has demonstrated utility. When coupled with the gravimetric Klason lignin method, ATR-FTIR study of reaction mixtures can lead to a better understanding of the delignification process. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of the cyclic imides cis-2-(2-fluorophenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione, C14H14FNO2, (I), and cis-2-(4-fluorophenyl)-3a,4,5,6,7,7a-hexahydroisoindoline-1,3-dione, C14H14FNO2, (III), and the open-chain amide acid rac-cis-2-[(3-fluorophenyl)carbamoyl]cyclohexane-1-carboxylic acid, C14H16FNO3, (II), are reported. Cyclic imides (I) and (III) are conformationally similar, with comparable ring rotations about the imide N-Car bond [the dihedral angles between the benzene ring and the five-membered isoindole ring are 55.40 (8)° for (I) and 51.83 (7)° for (III)]. There are no formal intermolecular hydrogen bonds involved in the crystal packing of either (I) or (III). With the acid (II), in which the meta-related F-atom substituent is rotationally disordered (0.784:0.216), the amide group lies slightly out of the benzene plane [the interplanar dihedral angle is 39.7 (1)°]. Intermolecular amide-carboxyl N-HO hydrogen-bonding interactions between centrosymmetrically related molecules form stacks extending down b, and these are linked across c by carboxyl-amide O-HO hydrogen bonds, giving two-dimensional layered structures which lie in the (011) plane. The structures reported here represent examples of compounds analogous to the phthalimides or phthalanilic acids and have little precedence in the crystallographic literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrate reduction with nanoscale zero-valent iron (NZVI) was reported as a potential technology to remove nitrate from nitrate-contaminated water. In this paper, nitrate reduction with NZVI prepared by hydrogen reduction of natural goethite (NZVI-N, -N represents natural goethite) and hydrothermal goethite (NZVI-H, -H represents hydrothermal goethite) was conducted. Besides, the effects of reaction time, nitrate concentration, iron-to-nitrate ratio on nitrate removal rate over NZVI-H and NZVI-N were investigated. To prove their excellent nitrate reduction capacities, NZVI-N and NZVI-H were compared with ordinary zero-valent iron (OZVI-N) through the static experiments. Based on all above investigations, the mechanism of nitrate reduction with NZVI-N was proposed. The result showed that reaction time, nitrate concentration, iron-to-nitrate ratio played an important role in nitrate reduction by NZVI-N and NZVI-H. Compared with OZVI, NZVI-N and NZVI-H showed little relationship with pH. And NZVI-N for nitrate composition offers a higher stability than NZVI-H because of the existence of Al-substitution. Furthermore, NZVI-N, prepared by hydrogen reduction of goethite, has higher activity for nitrate reduction and the products contain hydrogen, nitrogen, NH 4 +, a little nitrite, but no NOx, meanwhile NZVI-N was oxidized to Fe 2+. It is a relatively easy and cost-effective method for nitrate removal, so NZVI-N reducing nitrate has a great potential application in nitrate removal of groundwater. © 2012 Elsevier B.V.