705 resultados para prostheses
Resumo:
Background: Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only.Methods: A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made.Results: The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures.Conclusions: The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants. © 2010 Richter et al; licensee BioMed Central Ltd.
Resumo:
Uma das áreas de aplicação da optimização é a Engenharia Biomédica, pois a optimização intervém no estudo de próteses e implantes, na reconstrução tomográfica, na mecânica experimental, entre outras aplicações. Este projecto tem como principal objectivo a criação de um novo programa de marcação de exames médicos a fim de minimizar o tempo de espera na realização dos mesmos. É efectuada uma breve referência à teoria da optimização bem como à optimização linear e não-linear, aos algoritmos genéticos, que foram usados para a realização deste trabalho. É também apresentado um caso de estudo, formulado como um problema de optimização não linear com restrições. Com este estudo verificou-se que o escalonamento de exames médicos nunca poderá ser optimizado a 100por cento devido à quantidade de variáveis existentes, sendo que algumas delas não são passíveis de prever com antecedência.
Resumo:
Tese (Doutorado em Tecnologia Nuclear)
Resumo:
Titanium is a biomaterial widely employed in biomedical applications (implants, prostheses, valves, stents). Several heat treatments are usually used in order to obtain physical properties required to different applications. This work studied the influence of the heat treatment on microstructure of commercial pure titanium, and their consequences in growth and proliferation of MC3T3-E1 cells. Discs of titanium were treated in different temperatures, and characterized by optical microscopy, image analysis, wettabillity, roughness, hardness and X-ray diffraction. After the heat treatment, significant modifications in these properties were observed. Pattern images of titanium, before and after the cell culture, were compared by overlapping to analyze the influence of microstructure in microstructure and preferences guidance cells. However, in general, titanium discs that showed a higher residual strength also presented an increase of cells numbers on surface
Resumo:
Ceramics materials have good properties including chemical stability, high hardness and wear resistance. Moreover, due to its fragility, can suffer failure under relatively low levels of tension. Actually zirconia is the material of choice in metal free dental prostheses used in dentistry due its inertia in physiological environment, good bending strength, hardness and fracture toughness. The alumina and mixed tungsten and titanium carbides additions, acting as reinforcement elements in the zirconia matrix, have as their main objective the improvement of mechanical properties of this material. In this work, samples of zirconia, zirconia with 30% wt of alumina and zirconia with 30% wt mixed carbides were analyzed. The samples were sintered by uniaxial hot pressing on 30 MPa pressure, for 1 hour in an argon atmosphere. They were physically characterized by porosity and density measurements, and mechanically by 3-points bending strength and Vickers microhardness. The X-ray diffraction was used for the phase identifications and microstructure was examined by scanning electron microscopy (SEM). The addition of mixed carbides as reinforcement elements in zirconia matrix provides improvements in all properties analyzed in this work. The alumina addition has dropped the zirconia strength, although it caused improvement in other properties
Resumo:
[EU]"Arku fazial birtualaren balidazioa eta optimizazioa". Odontologian eta, oro har, medikuntzan, prozesu birtualek geroz eta indar handiagoa hartzen dabiltza, bai espezialista baita pazienteei erraztasuna emateko asmoz. Ildo horretatik jarraituz, protesien eta hortz-errestaurazioen kasuan, ikerketa sakonak burutu dira, prozesuaren ahalik eta zatirik handiena digitalizatzeko. Digitalizazio prozesu honetan CAD/CAM sistemaren aurrerapenek ere zeresan handia izan dute; izan ere, protesi eta errestaurazioen prozesu tradizionala ordezkatzea ahalbidetu du. Prozesu digitalek hainbat onura suposatu arren, zein fidagarriak diren konprobatzea ezinbestekoa da, prozesuarentzat metodologiarik egokiena aukeratu ahal izateko. Horretan zentratzen da hain zuzen proiektu hau. Protesien diseinu birtuala egin ahal izateko, beharrezkoa da horzduren kokapen birtuala lortzea, artikulagailu birtualean kokatu ahal izateko. Horretarako arku fazial birtuala erabiliko da, baina oraindik ez da metodologiarik egokiena zein den konprobatu. Beraz, proiektu honen helburua arku fazial birtual egokiena zein den zehaztea da, horretarako metodologia ezberdinak konparatuko direlarik bai modelo ez-erreala erabiliz (in vitro) baita paziente errealekin (in vivo). Horrela, prozesu ezberdinen zehaztasuna zein den konprobatu ahal izango da, bakoitzaren egiazkotasuna eta doitasuna aztertuz. Emaitzetan oinarrituz, arku fazial birtual gisa metodologiarik egokiena zein den ondorioztatu ahal izango da.
Resumo:
Mammography is a diagnostic imaging method in which interpretation depends on knowledge of radiological aspects as well as the clinical exam and pathophysiology of breast diseases. In this work a mammography phantom was developed to be used for training in the operation of mammographic x-ray equipment, image quality evaluation, self-examination and clinical examination of palpation. Polyurethane was used for the production of the phantoms for its physical and chemical properties and because it is one of the components normally used in prostheses. According to the range of flexibility of the polyurethane, it was possible to simulate breasts with higher or lower amount of adipose tissue. Pathologies such as areolar necrosis and tissue rejection due to surgery reconstruction after partial mastectomy were also simulated. Calcifications and nodules were simulated using the following materials: polyethylene, poly (methyl methacrylate), polyamide, polyurethane and poly (dimethyl silicone). Among these, polyethylene was able to simulate characteristics of calcification as well as breast nodules. The results from mammographic techniques used in this paper for the evaluation of the phantoms are in agreement with data found in the literature. The image analyses of four phantoms indicated significant similarities with the human skin texture and the female breast parenchyma. It was possible to detect in the radiographic images produced regions of high and low radiographic optical density, which are characteristic of breasts with regions of different amount of adipose tissue. The stiffnesses of breast phantoms were adjusted according to the formulation of the polyurethane which enabled the production of phantoms with distinct radiographic features and texture similar to human female breast parenchyma. Clinical palpation exam of the phantoms developed in this work indicated characteristics similar to human breast in skin texture, areolar region and parenchyma
Resumo:
Aim: To evaluate the association between oral health status, socio-demographic and behavioral factors with the pattern of maturity of normal epithelial oral mucosa. Methods: Exfoliative cytology specimens were collected from 117 men from the border of the tongue and floor of the mouth on opposite sides. Cells were stained with the Papanicolaou method and classified into: anucleated, superficial cells with nuclei, intermediate and parabasal cells. Quantification was made by selecting the first 100 cells in each glass slide. Sociodemographic and behavioral variables were collected from a structured questionnaire. Oral health was analyzed by clinical examination, recording decayed, missing and filled teeth index (DMFT) and use of prostheses. Multivariable linear regression models were applied. Results: No significant differences for all studied variables influenced the pattern of maturation of the oral mucosa except for alcohol consumption. There was an increase of cell surface layers of the epithelium with the chronic use of alcohol. Conclusions: It is appropriate to use Papanicolaou cytopathological technique to analyze the maturation pattern of exposed subjects, with a strong recommendation for those who use alcohol - a risk factor for oral cancer, in which a change in the proportion of cell types is easily detected.
Resumo:
At present, the material of choice for performing aesthetic dental prosthetic work is in the ceramic. Among them, the ceramic base of stabilized zirconia with 3% yttria (3Y - TZP) stand out for having excellent physical and mechanical properties. During the machining of blocks of zirconia in the laboratory to prepare the various types of prostheses, much of the material is given off in the form of powder, which is subsequently discarded. The waste of this material results in financial loss, reflecting higher final cost treatment for patients, as well as damage to the environment, thanks to the processes involved in the manufacture and disposal of the ceramic. This research, pioneered the recycling of zirconium oxide powder obtained during milling of dental crowns and bridges, we highlight the social and environmental aspects and aims to establish a protocol for the reuse of waste (powder of zirconia Zirkonzahn® system) discarded to obtain a new block of compacted zirconia to maintain the same mechanical and microstructural properties of commercial high-cost imported material. To compare with the commercial material, samples were uniaxially (20 MPa) and isostatically (100 MPa), and its mechanical and microstructural characterization was performed through tests of density, porosity, dilatometry, X-ray diffraction (XRD), hardness, fracture toughness, resistance to fracture electron microscopy (SEM) and analysis of grain size. The results observed in the samples were isostatically pressed similiares those obtained with samples from the commercial material demonstrating the viability of the process
Resumo:
Purpose: This was a retrospective cohort study designed to evaluate the clinical performance of ceramicveneered zirconia frameworks. Materials and Methods: Patients were recruited according to defined inclusion criteria. All patients were checked every 4 months from the time of definitive rehabilitation. At the end of 2013, all patients were rescheduled and rechecked for study purposes. The restorative procedures assessment was performed by previously established methods. The primary outcomes were the survival and success rates of the prosthesis. Descriptive statistics were used for the patient's demographics, implant distribution, and occurrence of complications. To study the survival and success of the prostheses, a Cox Regression analysis was used with a model constructed in a forward conditional stepwise mode. Predictive variables were included in the model, and adjusted survival curves were obtained for each outcome. Results: From 2008 to 2013, 75 patients were rehabilitated with 92 implant-supported, screw-retained, full-arch ceramic-veneered zirconia framework rehabilitations. The range of follow-up was between 6 months and 5 years. From the 92 full implant-supported screw-retained full-arch rehabilitations, Cox regression analysis indicated that within a 5-year time frame, the probability of framework fracture, major chipping, minor chipping, or any of the former combined to occur was 17.6%, 46.5%, 69.2%, and 90.5%, respectively. Conclusion: Results suggest zirconia as a suitable material for framework structure in implant-supported, full-arch rehabilitations. However, it experiences a high incidence of technical complications, mainly due to ceramic chipping. Further clinical studies should aim to ascertain the effects of clinical features and manufacturing procedures on the survival rates of these prostheses. © 2016 by Quintessence Publishing Co Inc.
Resumo:
Il progetto di dottorato che verrà presentato in questa tesi è focalizzato sullo sviluppo di un metodo sperimentale per la produzione di protesi personalizzate utilizzando il processo di fabbricazione additiva di Selective Laser Melting (SLM). L’obiettivo è quello di definire una condizione di processo ottimizzata per applicazioni in ambito chirurgico che possa essere generalizzabile, ovvero che ne garantisca la riproducibilità al variare dell’anatomia del paziente e che rappresenti la base per estendere il metodo ad altre componenti protesiche. Il lavoro si è sviluppato lungo due linee principali, la cui convergenza ha permesso di realizzare prototipi di protesi complete utilizzando un solo processo: da una parte la produzione di componenti a massima densità per il raggiungimento di elevate resistenze meccaniche, buona resistenza ad usura e corrosione e controllo di tensioni residue e deformazione delle parti stampate. Dall’altra si sono studiate strutture reticolari a geometria e porosità controllata per favorire l’osteointegrazione della componente protesica post impianto. In questo studio sono stati messe a confronto le possibili combinazioni tra parametri di processo e sono state individuate le correlazioni con le proprietà finali dei componenti stampati. Partendo da queste relazioni si sono sviluppate le strategie tecnologiche per la progettazione e la produzione dei componenti. I test sperimentali svolti e i risultati ottenuti hanno dimostrato la fattibilità dell’utilizzo del processo SLM per la produzione di protesi personalizzate e sono stati fabbricati i primi prototipi funzionali. La fabbricazione di protesi personalizzate richiede, però, anche la progettazione e la produzione di strumentario chirurgico ad hoc. Per questo motivo, parallelamente allo studio della lega di Cromo Cobalto, sono stati eseguiti i test anche su campioni in INOX 316L. Anche in questo caso è stato possibile individuare una finestra operativa di processo che garantisse proprietà meccaniche comparabili, e in alcuni casi superiori, a quelle ottenute con processi convenzionali.
Resumo:
Expandable prostheses are becoming increasingly popular in the reconstruction of children with bone sarcomas of the lower limb. Since the introduction of effective chemotherapy in the treatment of these pathologies, in the 70s, there has been need for new limb salvage techniques. In children, limb salvage of the lower limbs is particularly challenging, not in the last place, because of the loss of growth potential. Therefore, expandable prostheses have been developed. However, the first experiences with these implants were not very successful. High complication rates and unpredictable outcomes raised major concerns on this innovative type of reconstruction. The rarity of the indication is one of the main reasons why there has been a relatively slow learning curve and implant development regarding this type of prosthesis. This PhD thesis, gives an overview of the introduction, the development, the current standards, and the future perspectives of expandable prostheses for the reconstruction of the distal femur in children.
Resumo:
La stenosi valvolare aortica è la più frequente patologia valvolare cardiaca nei paesi sviluppati come diretta conseguenza dell’aumentata aspettativa di vita. In Europa si stima che il numero di soggetti sintomatici per stenosi valvolare aortica aumenterà da 1.3 milioni nel 2025 a 2.1 milioni in 2050. Di conseguenza la stenosi aortica ha e avrà un forte impatto sulla salute pubblica e sui costi che ne determina, poiché spesso associata a un declino funzionale dei pazienti ed aumentata incidenza di ospedalizzazione. D’altra parte è noto che la stenosi valvolare aortica severa non trattata si associa a prognosi infausta con una sopravvivenza del 50% a 2 anni dall’insorgenza dei sintomi e del 20% a 5 anni. Ad oggi non esiste una terapia medica efficace per la stenosi valvolare aortica in quanto andando a costituire un’ostruzione meccanica, resta di competenza del cardiochirurgo o del cardiologo interventista. La sostituzione valvolare aortica, sia essa chirurgica o percutanea, resta pertanto il solo trattamento definitivo per la stenosi valvolare aortica. Nel tempo il rischio operatorio è estremamente diminuito e i vantaggi in termini di miglioramento della qualità di vita sono evidenti. Questo progetto di ricerca prevede pertanto un’analisi delle più recenti tecnologie per il trattamento chirurgico della stenosi valvolare aortica a partire dalla tipologia di approccio chirurgico, se mini-invasivo o tradizionale, fino all’utilizzo delle più recenti protesi biologiche sutureless studiandone i vantaggi, svantaggi e risultati. Prima ancora, tuttavia, saranno analizzati i meccanismi di biologia molecolare alla base dell’eziologia della stenosi aortica al fine di poter identificare precocemente i pazienti, di prevedere l’andamento della patologia e forse, in futuro, anche di ipotizzare una terapia farmacologica mirata.
Resumo:
Considering different perspectives, the scope of this thesis is to investigate how to improve healthcare resources allocation and the provision efficiency for hip surgeries, a resource-intensive operation, among the most frequently performed on the elderly, with a trend in volume that is increasing in years due to population aging. Firstly, the effect of Time-To-Surgery (TTS) on mortality for hip fracture patients is investigated. The analysis attempts to account for TTS endogeneity due to the inability to fully control for variables affecting patient delay – e.g. patient severity. Exploiting an instrumental variable model, where being admitted on Friday or Saturday predicts longer TTS, findings show exogenous TTS does not have a significant effect on mortality. Thus suggesting surgeons prioritize patients effectively, neutralizing the adverse impact of longer TTS. Then, the volume-outcome relation for total hip replacement surgery is analyzed, seeking to account for selective referral, which may be present in elective surgery context, and induce reverse causality issue in the volume-outcome relation. The analysis employs a conditional choice model where patient travel distance from all regions' hospitals is used as a hospital choice predictor. Findings show the exogenous hospital volume significantly decreases adverse outcomes probability, especially in the short run. Finally, the change in public procurement design enforced in the Romagna LHA (Italy) is exploited to assess its impact on hip prostheses cost, surgeons' implant choice, and patient health outcomes. Hip prostheses are the major cost-driver of hip replacement surgeries, hence it is crucial to design the public tender such that implant prices are minimized, but cost-containment policies have to be weighted with patient well-being. Evidence shows that a cost reduction occurred without a significant surgeons’ choices impact. Positive or no effect of surgeons specialization is found on patients outcomes after the new procurement introduction.
Resumo:
Lower limb amputation is an event that inevitably changes the lifestyle of the person with a significant impact on quality of life. The socket-type prosthesis entails that the residual limb is in direct contact with the socket which often implies numerous disadvantages. Osseointegrated prosthesis is a solution that avoids skin problems because not include the presence of the socket. In this type of prosthesis, a stem is surgically inserted inside the medullary canal and connected with the external prosthetic limb. Therefore, this thesis aims to highlight and explore the main strengths and problems of osseointegrated prostheses and to examine the role of physical activity, with attention to functional capacity and bone quality. The objectives of the thesis will be developed through 5 studies: (I) A gait analysis of a 44 years-old male patient who underwent surgery for the implantation of an osseointegrated prosthesis; (II) A systematic review to investigate the state of stump bone quality in patients with limb amputations; (III) A systematic review of the technologies involved in such devices has been carried out to identify the most fruitful ones in improving bone quality; (IV) A systematic review investigating the topic of physical activity and bone turnover biomarkers; (V) A systematic review to investigate the effects of physical activity interventions combined with drug treatments on bone biomarkers in people with osteopenia and osteoporosis. The integrated prosthesis is a good solution for people with lower limb amputation who cannot use their traditional socket-type prosthesis. Although many objectives have already been achieved, there are still many aspects that we can improve. These include the creation of a multidisciplinary path that support patients along their path, with particular attention to the pre-surgery and the post-rehabilitation phase that is still lacking even if of fundamental impact in determining the quality of life.