928 resultados para production line
Resumo:
The characterisation of facial expression through landmark-based analysis methods such as FACEM (Pilowsky & Katsikitis, 1994) has a variety of uses in psychiatric and psychological research. In these systems, important structural relationships are extracted from images of facial expressions by the analysis of a pre-defined set of feature points. These relationship measures may then be used, for instance, to assess the degree of variability and similarity between different facial expressions of emotion. FaceXpress is a multimedia software suite that provides a generalised workbench for landmark-based facial emotion analysis and stimulus manipulation. It is a flexible tool that is designed to be specialised at runtime by the user. While FaceXpress has been used to implement the FACEM process, it can also be configured to support any other similar, arbitrary system for quantifying human facial emotion. FaceXpress also implements an integrated set of image processing tools and specialised tools for facial expression stimulus production including facial morphing routines and the generation of expression-representative line drawings from photographs.
Resumo:
As fossil fuel prices increase and environmental concerns gain prominence, the development of alternative fuels from biomass has become more important. Biodiesel produced from microalgae is becoming an attractive alternative to share the role of petroleum. Currently it appears that the production of microalgal biodiesel is not economically viable in current environment because it costs more than conventional fuels. Therefore, a new concept is introduced in this article as an option to reduce the total production cost of microalgal biodiesel. The integration of biodiesel production system with methane production via anaerobic digestion is proved in improving the economics and sustainability of overall biodiesel stages. Anaerobic digestion of microalgae produces methane and further be converted to generate electricity. The generated electricity can surrogate the consumption of energy that require in microalgal cultivation, dewatering, extraction and transesterification process. From theoretical calculations, the electricity generated from methane is able to power all of the biodiesel production stages and will substantially reduce the cost of biodiesel production (33% reduction). The carbon emissions of biodiesel production systems are also reduced by approximately 75% when utilizing biogas electricity compared to when the electricity is otherwise purchased from the Victorian grid. The overall findings from this study indicate that the approach of digesting microalgal waste to produce biogas will make the production of biodiesel from algae more viable by reducing the overall cost of production per unit of biodiesel and hence enable biodiesel to be more competitive with existing fuels.
Resumo:
BACKGROUND The increasing cost of fossil fuels as well as the escalating social and industrial awareness of the environmental impacts associated with the use of fossil fuels has created the need for more sustainable fuel options. Bioethanol, produced from renewable biomass such as sugar and starch materials, is believed to be one of these options, and it is currently being harnessed extensively. However, the utilization of sugar and starch materials as feedstocks for bioethanol production creates a major competition with the food market in terms of land for cultivation, and this makes bioethanol from these sources economically less attractive. RESULT This study explores the suitability of microalgae (Chlorococum sp.) as a substrate for bioethanol production via yeast (Saccharomycesbayanus)under different fermentation conditions. Results show a maximum ethanol concentration of 3.83 g L -1 obtained from 10 g L-1 of lipid-extracted microalgae debris. CONCLUSION This productivity level (∼38% w/w), which is in keeping with that of current production systems endorses microalgae as a promising substrate for bioethanol production.
Resumo:
Background: Conventional biodiesel production relies on trans-esterification of lipids extracted from vegetable crops. However, the use of valuable vegetable food stocks as raw material for biodiesel production makes it an unfeasibly expensive process. Used cooking oil is a finite resource and requires extra downstream processing, which affects the amount of biodiesel that can be produced and the economics of the process. Lipids extracted from microalgae are considered an alternative raw material for biodiesel production. This is primarily due to the fast growth rate of these species in a simple aquaculture environment. However, the dilute nature of microalgae culture puts a huge economic burden on the dewatering process especially on an industrial scale. This current study explores the performance and economic viability of chemical flocculation and tangential flow filtration (TFF) for the dewatering of Tetraselmis suecicamicroalgae culture. Results: Results show that TFF concentrates the microalgae feedstock up to 148 times by consuming 2.06 kWh m-3 of energy while flocculation consumes 14.81 kWhm-3 to concentrate the microalgae up to 357 times. Economic evaluation demonstrates that even though TFF has higher initial capital investment than polymer flocculation, the payback period for TFF at the upper extreme ofmicroalgae revenue is ∼1.5 years while that of flocculation is ∼3 years. Conclusion: These results illustrate that improved dewatering levels can be achieved more economically by employing TFF. The performances of these two techniques are also compared with other dewatering techniques.
Resumo:
Malaria is a global health problem; an effective vaccine is urgently needed. Due to the relative poverty and lack of infrastructure in malaria endemic areas, DNA-based vaccines that are stable at ambient temperatures and easy to formulate have great potential. While attention has been focused mainly on antigen selection, vector design and efficacy assessment, the development of a rapid and commercially viable process to manufacture DNA is generally overlooked. We report here a continuous purification technique employing an optimized stationary adsorbent to allow high-vaccine recovery, low-processing time, and, hence, high-productivity. A 40.0 mL monolithic stationary phase was synthesized and functionalized with amino groups from 2-Chloro-N,N- diethylethylamine hydrochloride for anion-exchange isolation of a plasmid DNA (pDNA) that encodes a malaria vaccine candidate, VR1020-PyMSP4/5. Physical characterization of the monolithic polymer showed a macroporous material with a modal pore diameter of 750 nm. The final vaccine product isolated after 3 min elution was homogeneous supercoiled plasmid with gDNA, RNA and protein levels in keeping with clinical regulatory standards. Toxicological studies of the pVR1020-PyMSP4/5 showed a minimum endotoxin level of 0.28 EU/m.g pDNA. This cost-effective technique is cGMP compatible and highly scalable for the production of DNA-based vaccines in commercial quantities, when such vaccines prove to be effective against malaria. © 2008 American Institute of Chemical Engineers.
Resumo:
The recognition of the potential efficacy of plasmid DNA (pDNA) molecules as vectors in the treatment and prevention of emerging diseases has birthed the confidence to combat global pandemics. This is due to the close-to-zero safety concern associated with pDNA vectors compared to viral vectors in cell transfection and targeting. Considerable attention has been paid to the potential of pDNA vectors but comparatively less thought has been given to the practical challenges in producing large quantities to meet current rising demands. A pilot-scale fermentation scheme was developed by employing a stoichiometrically-designed growth medium whose exceptional plasmid yield performance was attested in a shake flask environment for pUC19 and pEGFP-N1 transformed into E. coliDH5α and E. coliJM109, respectively. Batch fermentation of E. coliDH5α-pUC19 employing the stoichiometric medium displayed a maximum plasmid volumetric and specific yield of 62.6 mg/L and 17.1 mg/g (mg plasmid/g dry cell weight), respectively. Fed-batch fermentation of E. coliDH5α-pUC19 on a glycerol substrate demonstrated one of the highest ever reported pilot-scale plasmid specific yield of 48.98 mg/g and a volumetric yield of 0.53 g/L. The attainment of high plasmid specific yields constitutes a decrease in plasmid manufacturing cost and enhances the effectiveness of downstream processes by reducing the proportion of intracellular impurities. The effect of step-rise temperature induction was also considered to maximize ColE1-origin plasmid replication.
Resumo:
Increasing numbers of preclinical and clinical studies are utilizing pDNA (plasmid DNA) as the vector. In addition, there has been a growing trend towards larger and larger doses of pDNA utilized in human trials. The growing demand on pDNA manufacture leads to pressure to make more in less time. A key intervention has been the use of monoliths as stationary phases in liquid chromatography. Monolithic stationary phases offer fast separation to pDNA owing to their large pore size, making pDNA in the size range from 100 nm to over 300 nm easily accessible. However, the convective transport mechanism of monoliths does not guarantee plasmid purity. The recovery of pure pDNA hinges on a proper balance in the properties of the adsorbent phase, the mobile phase and the feedstock. The effects of pH and ionic strength of binding buffer, temperature of feedstock, active group density and the pore size of the stationary phase were considered as avenues to improve the recovery and purity of pDNA using a methacrylate-based monolithic adsorbent and Escherichia coli DH5α-pUC19 clarified lysate as feedstock. pDNA recovery was found to be critically dependent on the pH and ionic strength of the mobile phase. Up to a maximum of approx. 92% recovery was obtained under optimum conditions of pH and ionic strength. Increasing the feedstock temperature to 80°C increased the purity of pDNA owing to the extra thermal stability associated with pDNA over contaminants such as proteins. Results from toxicological studies of the plasmid samples using endotoxin standard (E. coli 0.55:B5 lipopolysaccharide) show that endotoxin level decreases with increasing salt concentration. It was obvious that large quantities of pure pDNA can be obtained with minimal extra effort simply by optimizing process parameters and conditions for pDNA purification.
Resumo:
Current developments in gene medicine and vaccination studies are utilizing plasmid DNA (pDNA) as the vector. For this reason, there has been an increasing trend towards larger and larger doses of pDNA utilized in human trials: from 100-1000 μg in 2002 to 500-5000 μg in 2005. The increasing demand of pDNA has created the need to revolutionalize current production levels under optimum economy. In this work, different standard media (LB, TB and SOC) for culturing recombinant Escherichia coli DH5α harbouring pUC19 were compared to a medium optimised for pDNA production. Lab scale fermentations using the standard media showed that the highest pDNA volumetric and specific yields were for TB (11.4 μg/ml and 6.3 μg/mg dry cell mass respectively) and the lowest was for LB (2.8 μg/ml and 3.3 μg/mg dry cell mass respectively). A fourth medium, PDMR, designed by modifying a stoichiometrically-formulated medium with an optimised carbon source concentration and carbon to nitrogen ratio displayed pDNA volumetric and specific yields of 23.8 μg/ml and 11.2 μg/mg dry cell mass respectively. However, it is the economic advantages of the optimised medium that makes it so attractive. Keeping all variables constant except medium and using LB as a base scenario (100 medium cost [MC] units/mg pDNA), the optimised PDMR medium yielded pDNA at a cost of only 27 MC units/mg pDNA. These results show that greater amounts of pDNA can be obtained more economically with minimal extra effort simply by using a medium optimised for pDNA production.
Resumo:
Infectious diseases such as SARS, influenza and bird flu have the potential to cause global pandemics; a key intervention will be vaccination. Hence, it is imperative to have in place the capacity to create vaccines against new diseases in the shortest time possible. In 2004, The Institute of Medicine asserted that the world is tottering on the verge of a colossal influenza outbreak. The institute stated that, inadequate production system for influenza vaccines is a major obstruction in the preparation towards influenza outbreaks. Because of production issues, the vaccine industry is facing financial and technological bottlenecks: In October 2004, the FDA was caught off guard by the shortage of flu vaccine, caused by a contamination in a US-based plant (Chiron Corporation), one of the only two suppliers of US flu vaccine. Due to difficulties in production and long processing times, the bulk of the world's vaccine production comes from very small number of companies compared to the number of companies producing drugs. Conventional vaccines are made of attenuated or modified forms of viruses. Relatively high and continuous doses are administered when a non-viable vaccine is used and the overall protective immunity obtained is ephemeral. The safety concerns of viral vaccines have propelled interest in creating a viable replacement that would be more effective and safer to use.
Resumo:
A major drawback to the immunological potency of conventional vaccines, resulting in reduced level of immune responses, tissue injury, shock and high cytotoxicity, thus making their applications contraindicated in immunodeficiency diseases, is the presence of high contaminant concentrations in vaccine titers. Vaccine contamination arises from the simultaneous occurrence of competitive pathways resulting in the formation of other bio-products during cellular metabolism aside the pathways necessary for the production of vaccine molecules. One of such vaccine contaminating molecules is endotoxins which are mainly lipopolysaccharides (LPS) complexes found in the membrane of bacterial cell wall. The structural dynamics of these molecules make their removal from vaccine titers problematic, thus making vaccine endotoxin removal a major research endeavour. This presentation will discuss a novel technique for reducing the endotoxin level of vaccines. The technique commences with the disentanglement of endotoxin-vaccine molecular bonding and then capturing the vaccine molecules on an affinity monolith to separate the vaccine molecules from the endotoxins.
Resumo:
In order to protect our planet and ourselves from the adverse effects of excessive CO2 emissions and to prevent an imminent non-renewable fossil fuel shortage and energy crisis, there is a need to transform our current ‘fossil fuel dependent’ energy systems to new, clean, renewable energy sources. The world has recognized hydrogen as an energy carrier that complies with all the environmental quality and energy security, demands. This research aimed at producing hydrogen through anaerobic fermentation, using food waste as the substrate. Four food waste substrates were used: Rice, fish, vegetable and their mixture. Bio-hydrogen production was performed in lab scale reactors, using 250 mL serum bottles. The food waste was first mixed with the anaerobic sewage sludge and incubated at 37°C for 31 days (acclimatization). The anaerobic sewage sludge was then heat treated at 80°C for 15 min. The experiment was conducted at an initial pH of 5.5 and temperatures of 27, 35 and 55°C. The maximum cumulative hydrogen produced by rice, fish, vegetable and mixed food waste substrates were highest at 37°C (Rice =26.97±0.76 mL, fish = 89.70±1.25 mL, vegetable = 42.00±1.76 mL, mixed = 108.90±1.42 mL). A comparative study of acclimatized (the different food waste substrates were mixed with anaerobic sewage sludge and incubated at 37°C for 31days) and non-acclimatized food waste substrate (food waste that was not incubated with anaerobic sewage sludge) showed that acclimatized food waste substrate enhanced bio-hydrogen production by 90 - 100%.
Resumo:
Astaxanthin is a high value carotenoid produced by some bacteria, a few green algae, several fungi but only a limited number of plants from the genus Adonis. Astaxanthin has been industrially exploited as a feed supplement in poultry farming and aquaculture. Consumption of ketocarotenoids, most notably astaxanthin, is also increasingly associated with a wide range of health benefits,as demonstrated in numerous clinical studies. Currently astaxanthin is produced commercially by chemical synthesis or from algal production systems. Several studies have used a metabolic engineering approach to produce astaxanthin in transgenic plants. Previous attempts to produce transgenic potato tubers biofortified with astaxanthin have met with limited success. In this study we have investigated approaches to optimising tuber astaxanthin content. It is demonstrated that the selection of appropriate parental genotype for transgenic approaches and stacking carotenoid biosynthetic pathway genes with the cauliflower Or gene result in enhanced astaxanthin content, to give six-fold higher tuber astaxanthin content than has been achieved previously. Additionally we demonstrate the effects of growth environment on tuber carotenoid content in both wild type and astaxanthin-producing transgenic lines and describe the associated transcriptome and metabolome restructuring.