950 resultados para prey-predator demography


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The limited knowledge and/or the inability to control physiological condition parameters that influence the fate of organohalogen contaminants (OHCs) has been the foremost confounding aspect in monitoring programs and health risk assessments of wild top predators in the Arctic such as the polar bear (Ursus maritimus). In the present comparative study, we used a potential surrogate Canoidea species for the East Greenland polar bear, the captive sledge dog (Canis familiaris), to investigate some factors that may influence the bioaccumulation and biotransformation of major chlorinated and brominated OHCs in adipose tissue and blood (plasma) of control (fed commercial pork fat) and exposed (fed West Greenland minke whale (Balaenoptera acutorostrata) blubber) adult female sledge dogs. Furthermore, we compared the patterns and concentrations of OHCs and their known or suggested hydroxylated (OH) metabolites (e.g., OH-PCBs) in sledge dogs with those in adipose tissue and blood (plasma) of East Greenland adult female polar bears, and blubber of their main prey species, the ringed seal (Pusa hispida). The two-year feeding regime conducted with sledge dogs led to marked differences in overall adipose tissue (and plasma) OHC residue accumulation between the control and exposed groups. Characteristic prey-to-predator OHC bioaccumulation dynamics for major PCB and PBDE congeners (patterns and concentrations) and biotransformation capacity with respect to PCB metabolite formation and OH-PCB retention distinguished, to some extent, captive sledge dogs and wild polar bears. Based on the present findings, we conclude that the use of surrogate species in toxicological investigations for species in the Canoidea family should be done with great caution, although they remain essential in the context of contaminants research with sensitive arctic top carnivore species such as the polar bear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resource pulses are common in various ecosystems and often have large impacts on ecosystem functioning. Many animals hoard food during resource pulses, yet how this behaviour affects pulse diffusion through trophic levels is poorly known because of a lack of individual-based studies. Our objective was to examine how the hoarding behaviour of arctic foxes (Alopex lagopus) preying on a seasonal pulsed resource (goose eggs) was affected by annual and seasonal changes in resource availability. We monitored foraging behaviour of foxes in a greater snow goose (Chen caerulescens atlanticus) colony during 8 nesting seasons that covered 2 lemming cycles. The number of goose eggs taken and cached per hour by foxes declined 6-fold from laying to hatching, while the proportion of eggs cached remained constant. In contrast, the proportion of eggs cached by foxes fluctuated in response to the annual lemming cycle independently of the seasonal pulse of goose eggs. Foxes cached the majority of eggs taken (> 90%) when lemming abundance was high or moderate but only 40% during the low phase of the cycle. This likely occurred because foxes consumed a greater proportion of goose eggs to fulfill their energy requirement at low lemming abundance. Our study clearly illustrates a behavioural mechanism that extends the energetic benefits of a resource pulse. The hoarding behaviour of the main predator enhances the allochthonous nutrients input brought by migrating birds from the south into the arctic terrestrial ecosystem. This could increase average predator density and promote indirect interactions among prey.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and variability of pelagic food webs along the north and northwestern shelf of the Iberian Peninsula were analysed using natural abundance of nitrogen stable isotopes of plankton and pelagic consumers. Plankton composition was mainly studied in size-fractionated samples, but also the isotopic signatures of three copepod species, as representative of primary consumers, were considered. Several fish species were included as planktivorous consumers, with special attention to sardine (Sardina pilchardus). Finally, top pelagic consumers were represented by the common dolphin (Delphinus delphis). The relationship between trophic position and body size implies large variability in the ratio of predator to prey sizes, likely because widespread omnivory and plankton consumption by relatively large predators. Planktivorous species share a common trophic position, suggesting potential competition for food, and low nitrogen isotope enrichment between prey and consumers suggest nutrient limitation and recycling at the base of the food web. Both experimental and field evidences indicate that the muscle of sardine integrates fish diet over seasonal periods and reflects the composition of plankton from large shelf areas. The low mobility of sardines during periods of low population size is consistent with differential isotopic signatures found in shelf zones characterised by upwelling nutrient inputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Harbour seals in Svalbard have short longevity, despite being protected from human hunting and having limited terrestrial predation at their haulout sites, low contaminant burdens and no fishery by-catch issues. This led us to explore the diet of Greenland sharks (Somniosus microcephalus) in this region as a potential seal predator. We examined gastrointestinal tracts (GITs) from 45 Greenland sharks in this study. These sharks ranged from 229 to 381 cm in fork length and 136-700 kg in body mass; all were sexually immature. Seal and whale tissues were found in 36.4 and 18.2%, respectively, of the GITs that had contents (n = 33). Based on genetic analyses, the dominant seal prey species was the ringed seal (Pusa hispida); bearded seal (Erignathus barbatus) and hooded seal (Cystophora cristata) tissues were each found in a single shark. The sharks had eaten ringed seal pups and adults based on the presence of lanugo-covered prey (pups) and age determinations based on growth rings on claws (<1 year and adults). All of the whale tissue was from minke whale (Balenoptera acutorostrata) offal, from animals that had been harvested in the whale fishery near Svalbard. Fish dominated the sharks' diet, with Atlantic cod (Gadus morhua), Atlantic wolffish (Anarhichas lupus) and haddock (Melanogrammus aeglefinus) being the most important fish species. Circumstantial evidence suggests that these sharks actively prey on seals and fishes, in addition to eating carrion such as the whale tissue. Our study suggests that Greenland sharks may play a significant predatory role in Arctic food webs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through a field experiment, we show that a predator has negative nonconsumptive effects (NCEs) on different life-history stages of the same prey species. Shortly before the recruitment season of the barnacle Semibalanus balanoides (May-June), we established experimental cages in rocky intertidal habitats in Nova Scotia, Canada. The cages were used to manipulate the presence and absence of dogwhelks, Nucella lapillus, the main predators of barnacles. At the centre of each cage, we installed a tile where barnacle pelagic larvae could settle and the resulting recruits grow. Mesh prevented caged dogwhelks from accessing the tiles, but allowed waterborne dogwhelk cues to reach the tiles. Results in May indicated that barnacle larvae settled preferentially on tiles from cages without dogwhelks. In November, at the end of the dogwhelk activity period and once the barnacle recruits had grown to adult size, barnacle body mass was lower in the presence of dogwhelks. This limitation may have resulted from a lower barnacle feeding activity with nearby dogwhelks, as found by a previous study. The observed larval and adult responses in barnacles are consistent with attempts to decrease predation risk. November data also indicated that dogwhelk cues limited barnacle reproductive output, a possible consequence of the limited growth of barnacles. Overall, this study suggests that a predator species might influence trait evolution in a prey species through NCEs on different life-history stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study combined data on fin whale Balaenoptera physalus, humpback whale Megaptera novaeangliae, minke whale B. acutorostrata, and sei whale B. borealis sightings from large-scale visual aerial and ship-based surveys (248 and 157 sightings, respectively) with synoptic acoustic sampling of krill Meganyctiphanes norvegica and Thysanoessa sp. abundance in September 2005 in West Greenland to examine the relationships between whales and their prey. Krill densities were obtained by converting relationships of volume backscattering strengths at multiple frequencies to a numerical density using an estimate of krill target strength. Krill data were vertically integrated in 25 m depth bins between 0 and 300 m to obtain water column biomass (g/m**2) and translated to density surfaces using ordinary kriging. Standard regression models (Generalized Additive Modeling, GAM, and Generalized Linear Modeling, GLM) were developed to identify important explanatory variables relating the presence, absence, and density of large whales to the physical and biological environment and different survey platforms. Large baleen whales were concentrated in 3 focal areas: (1) the northern edge of Lille Hellefiske bank between 65 and 67°N, (2) north of Paamiut at 63°N, and (3) in South Greenland between 60 and 61° N. There was a bimodal pattern of mean krill density between depths, with one peak between 50 and 75 m (mean 0.75 g/m**2, SD 2.74) and another between 225 and 275 m (mean 1.2 to 1.3 g/m**2, SD 23 to 19). Water column krill biomass was 3 times higher in South Greenland than at any other site along the coast. Total depth-integrated krill biomass was 1.3 x 10**9 (CV 0.11). Models indicated the most important parameter in predicting large baleen whale presence was integrated krill abundance, although this relationship was only significant for sightings obtained on the ship survey. This suggests that a high degree of spatio-temporal synchrony in observations is necessary for quantifying predator-prey relationships. Krill biomass was most predictive of whale presence at depths >150 m, suggesting a threshold depth below which it is energetically optimal for baleen whales to forage on krill in West Greenland.