952 resultados para potassium cell level


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selection of division sites and coordination of cytokinesis with other cell cycle events are critical for every organism to proliferate. In E. coli, the nucleoid is proposed to exclude division from the site of the chromosome (nucleoid occlusion model). We studied the effect of the nucleoid on timing and placement of cell division. An early cell division protein, FtsZ, was used to follow development of the division septum. FtsZ forms a ring structure (Z ring) at potential division sites. The dynamics of Z ring was visualized in live cells by fusing FtsZ with a green fluorescent protein (GFP). Emanating FtsZ-GFP polymers from the constricted septum or aggregates in daughter cells were also observed, probably representing the FtsZ depolymerization and immature FtsZ nucleation processes. We next examined the nucleoid occlusion model. Mutants carrying abnormally positioned chromosomes were employed. In chromosomal partition mutants, replicated chromosomes cannot segregate. The Z ring was excluded from midcell to the edge of the nucleoid. This negative effect of nucleoids was further confirmed in replication deficient dnaA mutants, in which only a single chromosome is present in the cell center. These results suggest that the nucleoid, replicating or not, inhibits division in the area where the chromosome occupies. In addition, increasing the level of FtsZ does not overcome nucleoid inhibition. Interestingly in anucleate cells produced by both mutants, the Z ring was localized in the central part of the cell, which indicates that the nucleoid is not required for FtsZ assembly. Relaxation of chromosomes by reducing the gyrase activity or disruption of protein translation/translocation did not abolish the division inhibition capacity of the nucleoid. However, preventing transcription did compromise the nucleoid occlusion effect, leading to formation of multiple FtsZ rings above the nucleoid. In summary, we demonstrate that nucleoids negatively regulate the timing and position of division by inhibiting FtsZ assembly at unselected sites. Relief of this inhibition at midcell is coincident with the completion of DNA replication. On the other hand, FtsZ assembly does not require the nucleoid. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac glycoside compounds have traditionally been used to treat congestive heart failure. Recently, reports have suggested that cardiac glycosides may also be useful for treatment of malignant disease. Our research with oleandrin, a cardiac glycoside component of Nerium oleander, has shown it to be a potent inducer of human but not murine tumor cell apoptosis. Determinants of tumor sensitivity to cardiac glycosides were therefore studied in order to understand the species selective cytotoxic effects as well as explore differential sensitivity amongst a variety of human tumor cell lines. ^ An initial model system involved a comparison of human (BRO) to murine (B16) melanoma cells. Human BRO cells were found to express both the sensitive α3 as well as the less sensitive α1 isoform subunits of Na+,K +-ATPase while mouse B16 cells expressed only the α1 isoform. Drug uptake and inhibition of Na+,K+-ATPase activity were also different between BRO and B16 cells. Partially purified human Na+,K+-ATPase enzyme was inhibited by cardiac glycosides at a concentration that was 1000-fold less than that required to inhibit mouse B16 enzyme to the same extent. In addition, uptake of oleandrin and ouabain was 3–4 fold greater in human than murine cells. These data indicate that differential expression of Na+,K+-ATPase isoform composition in BRO and B16 cells as well as drug uptake and total enzyme activity may all be important determinants of tumor cell sensitivity to cardiac glycosides. ^ In a second model system, two in vitro cell culture model systems were investigated. The first consisted of HFU251 (low expression of Na+,K+-ATPase) and U251 (high Na+ ,K+-ATPase expression) cell lines. Also investigated were human BRO cells that had undergone stable transfection with the α1 subunit resulting in an increase in total Na+,K+-ATPase expression. Data derived from these model systems have indicated that increased expression of Na+,K+-ATPase is associated with an increased resistance to cardiac glycosides. Over-expression of Na +,K+-ATPase in tumor cells resulted in an increase of total Na+,K+-ATPase activity and, in turn, a decreased inhibition of Na+,K+-ATPase activity by cardiac glycosides. However, of interest was the observation that increased enzyme expression was also associated with an elevated basal level of glutathione (GSH) within cells. Both increased Na+,K+-ATPase activity and elevated GSH content appear to contribute to a delayed as well as diminished release of cytochrome c and caspase activation. In addition, we have noted an increased colony forming ability in cells with a high level of Na+,K+-ATPase expression. This suggests that Na+,K+-ATPase is actively involved in tumor cell growth and survival. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyomavirus enhancer activator 3 (PEA3) is a member of the Ets family of transcription factors. We demonstrated in a previous study that, through down-regulating the HER-2/neu oncogene at the transcriptional level, PEA3 can inhibit the growth and tumor development of HER-2/neu-overexpressing ovarian cancer cells. Here, we established stable clones of the human breast cancer cell line MDA-MB-361DYT2 that express PEA3 under the control of a tetracycline-inducible promoter. The expression of PEA3 in this cell line inhibited cell growth and resulted in cell cycle delay in the G1 phase independently of the HER-2/neu down-regulation. In an orthotopic breast cancer model, we showed that expression of PEA3 inhibited tumor growth and prolonged the survival of tumor-bearing mice. In a parallel experiment in another breast cancer cell line, BT474M1, we were unable to obtain stable PEA3-inducible transfectants, which suggests that PEA3 possessed a strong growth inhibitory effect in this cell line. Indeed, PEA3 coupled with the liposome SN2 demonstrated therapeutic effects in mice bearing tumors induced by BT474M1. These results provide evidence that the PEA3 gene could function as an antitumor and gene therapy agent for human breast cancers. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

4HPR is a synthetic retinoid that has shown chemopreventive and therapeutic efficacy against premalignant and malignant lesions including oral leukoplakia, ovarian and breast cancer and neuroblastoma in clinical trials. 4HPR induces growth inhibition and apoptosis in various cancer cells including head and neck squamous cell carcinoma (HNSCC) cells. 4HPR induces apoptosis by several mechanisms including increasing reactive oxygen species (ROS), or inducing mitochondrial permeability transition (MPT). 4HPR has also been shown to modulate the level of different proteins by transcriptional activation or posttranslational modification in various cellular contexts. However, the mechanism of its action is not fully elucidated. In this study, we explored the mechanism of 4HPR-induced apoptosis in HNSCC cells. ^ First, we identified proteins modulated by 4HPR by using proteomics approaches including: Powerblot western array and 2-dimensional polyacrylamide gel electrophoresis. We found that 4HPR modulated the levels of several proteins including c-Jun. Further analysis has shown that 4HPR induced activation of Activator Protein 1 (AP-1) components, c-Jun and ATF-2. We also found that 4HPR increased the level of Heat shock protein (Hsp) 70 and phosphorylation of Hsp27. ^ Second, we found that 4HPR induced prolonged activation of JNK, p38/MAPK and extracellular signal-regulated kinase (ERK). We also demonstrated that the activation of these kinases is required for 4HPR-induced apoptosis. JNK inhibitor SP600125 and siRNA against JNK1 and JNK2 suppressed, while overexpression of JNK1 enhanced 4HPR-induced apoptosis. p38/MAPK inhibitor PD169316 and MEK1/2 inhibitor PD98059 also suppressed 4HPR-induced apoptosis. We also demonstrated that activation of JNK, p38/MAPK and ERK is triggered by ROS generation induced by 4HPR. We also found that translation inhibitor, cycloheximide, suppressed 4HPR-induced apoptosis through inhibition of 4HPR-induced events (e.g. ROS generation, cytochrome c release, JNK activation and suppression of Akt). We also demonstrated that MPT is involved in 4HPR-induced apoptosis. ^ Third, we demonstrated the presence of NADPH oxidase in HNSCC 2B cells. We also found that 4HPR increased the level of the p67phox, a subunit of NADPH oxidase which participates in ROS production and apoptosis induced by 4HPR. ^ The novel insight into the mechanism by which 4HPR induces apoptosis can be used to improve design of future clinical studies with this synthetic retinoid in combination with specific MAPK modulators. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most studies of p53 function have focused on genes transactivated by p53. It is less widely appreciated that p53 can repress target genes to affect a particular cellular response. There is evidence that repression is important for p53-induced apoptosis and cell cycle arrest. It is less clear if repression is important for other p53 functions. A comprehensive knowledge of the genes repressed by p53 and the cellular processes they affect is currently lacking. We used an expression profiling strategy to identify p53-responsive genes following adenoviral p53 gene transfer (Ad-p53) in PC3 prostate cancer cells. A total of 111 genes represented on the Affymetrix U133A microarray were repressed more than two fold (p ≤ 0.05) by p53. An objective assessment of array data quality was carried out using RT-PCR of 20 randomly selected genes. We estimate a confirmation rate of >95.5% for the complete data set. Functional over-representation analysis was used to identify cellular processes potentially affected by p53-mediated repression. Cell cycle regulatory genes exhibited significant enrichment (p ≤ 5E-28) within the repressed targets. Several of these genes are repressed in a p53-dependent manner following DNA damage, but preceding cell cycle arrest. These findings identify novel p53-repressed targets and indicate that p53-induced cell cycle arrest is a function of not only the transactivation of cell cycle inhibitors (e.g., p21), but also the repression of targets that act at each phase of the cell cycle. The mechanism of repression of this set of p53 targets was investigated. Most of the repressed genes identified here do not harbor consensus p53 DNA binding sites but do contain binding sites for E2F transcription factors. We demonstrate a role for E2F/RB repressor complexes in our system. Importantly, p53 is found at the promoter of CDC25A. CDC25A protein is rapidly degraded in response to DNA damage. Our group has demonstrated for the first time that CDC25A is also repressed at the transcript level by p53. This work has important implications for understanding the DNA damage cell cycle checkpoint response and the link between E2F/RB complexes and p53 in the repression of target genes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

B-lymphocyte stimulator (BLyS also called BAFF), is a potent cell survival factor expressed in many hematopoietic cells. BLyS levels are elevated in the serum of non-Hodgkin lymphoma (NHL) patients, and have been reported to be associated with disease progression, and prognosis. To understand the mechanisms involved in BLyS gene expression and regulation, we examined expression, function, and regulation of the BLyS gene in B cell non-Hodgkin's lymphoma (NHL-B) cells. BLyS is constitutively expressed in aggressive NHL-B cells including large B cell lymphoma (LBCL) and mantle cell lymphoma (MCL) contributing to survival and proliferation of malignant B cells. Two important transcription factors, NF-κB and NFAT, were found to be involved in regulating BLyS expression through at least one NF-κB and two NFAT binding sites in the BLyS promoter. Further study indicates that the constitutive activation of NF-κB and BLyS in NHL-B cells forms a positive feedback loop contributing to cell survival and proliferation. In order to further investigate BLyS signaling pathway, we studied the function of BAFF-R, a major BLyS receptor, on B cells survival and proliferation. Initial study revealed that BAFF-R was also found in the nucleus, in addition to its presence on plasma membrane of B cells. Nuclear presentation of BAFF-R can be increased by anti-IgM and soluble BLyS treatment in normal peripheral B lymphocytes. Inhibition of BLyS expression decreases nuclear BAFF-R level in LBCL cells. Furthermore, we showed that BAFF-R translocated to nucleus through the classic karyopherin pathway. A candidate nuclear localization sequence (NLS) was identified in the BAFF-R protein sequence and mutation of this putative NLS can block BAFF-R entering nucleus and LBCL cell proliferation. Further study showed that BAFF-R co-localized with NF-κB family member, c-rel in the nucleus. We also found BAFF-R mediated transcriptional activity, which could be increased by c-rel. We also found that nuclear BAFF-R could bind to the NF-κB binding site on the promoters of NF-κB target genes such as BLyS, CD154, Bcl-xL, Bfl-1/A1 and IL-8. These findings indicate that BAFF-R may also promote survival and proliferation of normal B cells and NHL-B cells by directly functioning as a transcriptional co-factor with NF-κB family member. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction and objective. A number of prognostic factors have been reported for predicting survival in patients with renal cell carcinoma. Yet few studies have analyzed the effects of those factors at different stages of the disease process. In this study, different stages of disease progression starting from nephrectomy to metastasis, from metastasis to death, and from evaluation to death were evaluated. ^ Methods. In this retrospective follow-up study, records of 97 deceased renal cell carcinoma (RCC) patients were reviewed between September 2006 to October 2006. Patients with TNM Stage IV disease before nephrectomy or with cancer diagnoses other than RCC were excluded leaving 64 records for analysis. Patient TNM staging, Furhman Grade, age, tumor size, tumor volume, histology and patient gender were analyzed in relation to time to metastases. Time from nephrectomy to metastasis, TNM staging, Furhman Grade, age, tumor size, tumor volume, histology and patient gender were tested for significance in relation to time from metastases to death. Finally, analysis of laboratory values at time of evaluation, Eastern Cooperative Oncology Group performance status (ECOG), UCLA Integrated Staging System (UISS), time from nephrectomy to metastasis, TNM staging, Furhman Grade, age, tumor size, tumor volume, histology and patient gender were tested for significance in relation to time from evaluation to death. Linear regression and Cox Proportional Hazard (univariate and multivariate) was used for testing significance. Kaplan-Meier Log-Rank test was used to detect any significance between groups at various endpoints. ^ Results. Compared to negative lymph nodes at time of nephrectomy, a single positive lymph node had significantly shorter time to metastasis (p<0.0001). Compared to other histological types, clear cell histology had significant metastasis free survival (p=0.003). Clear cell histology compared to other types (p=0.0002 univariate, p=0.038 multivariate) and time to metastasis with log conversion (p=0.028) significantly affected time from metastasis to death. A greater than one year and greater than two year metastasis free interval, compared to patients that had metastasis before one and two years, had statistically significant survival benefit (p=0.004 and p=0.0318). Time from evaluation to death was affected by greater than one year metastasis free interval (p=0.0459), alcohol consumption (p=0.044), LDH (p=0.006), ECOG performance status (p<0.001), and hemoglobin level (p=0.0092). The UISS risk stratified the patient population in a statistically significant manner for survival (p=0.001). No other factors were found to be significant. ^ Conclusion. Clear cell histology is predictive for both time to metastasis and metastasis to death. Nodal status at time of nephrectomy may predict risk of metastasis. The time interval to metastasis significantly predicts time from metastasis to death and time from evaluation to death. ECOG performance status, and hemoglobin levels predicts survival outcome at evaluation. Finally, UISS appropriately stratifies risk in our population. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ubiquitination is an essential process involved in basic biological processes such as the cell cycle and cell death. Ubiquitination is initiated by ubiquitin-activating enzymes (E1), which activate and transfer ubiquitin to ubiquitin-conjugating enzymes (E2). Subsequently, ubiquitin is transferred to target proteins via ubiquitin ligases (E3). Defects in ubiquitin conjugation have been implicated in several forms of malignancy, the pathogenesis of several genetic diseases, immune surveillance/viral pathogenesis, and the pathology of muscle wasting. However, the consequences of partial or complete loss of ubiquitin conjugation in multi-cellular organisms are not well understood. Here, we report the characterization of nba1, the sole E1 in Drosophila. We have determined that weak and strong nba1 alleluias behave genetically different and sometimes in opposing phenotypes. For example, weak uba1 alleluias protect cells from cell death whereas cells containing strong loss-of-function alleluias are highly apoptotic. These opposing phenotypes are due to differing sensitivities of cell death pathway components to ubiquitination level alterations. In addition, strong uba1 alleluias induce cell cycle arrest due to defects in the protein degradation of Cyclins. Surprisingly, clones of strong uba1 mutant alleluias stimulate neighboring wild-type tissue to undergo cell division in a non-autonomous manner resulting in severe overgrowth phenotypes in the mosaic fly. I have determined that the observed overgrowth phenotypes were due to a failure to downregulate the Notch signaling pathway in nba1 mutant cells. Aberrant Notch signaling results in the secretion of a local cytokine and activation of JAK/STAT pathway in neighboring cells. In addition, we elucidated a model describing the regulation of the caspase Dronc in surviving cells. Binding of Dronc by its inhibitor Diap1 is necessary but not sufficient to inhibit Dronc function. Ubiquitin conjugation and Uba1 function is necessary for the negative regulation of Dronc. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuberculosis remains one of the leading causes of death in man due to a single infectious agent. An estimated one-third of the world's population is infected with the causative agent, Mycobacterium tuberculosis (Mtb), despite the availability of the widely used vaccine, BCG. BCG has significantly varying protection rates with the lowest level of protection seen with the most common form of TB, adult pulmonary TB. Thus, numerous studies are being conducted to develop a more efficient vaccine. The ideal candidate vaccine would possess the ability to induce a solid and strong Th1 response, as this is the subset of T cells primarily involved in clearance of the infection. A novel vaccine should also induce such a response that may be recalled and expanded upon subsequent infection. Our group has introduced a mutant of a virulent strain of Mtb which lacks a component of the immunogenic antigen 85 complex (Ag85). Our vaccine, ΔfbpA, does not secrete the fibronectin binding protein Ag85A, and this has shown to lead to its attenuation in both murine macrophages and mice. Previous studies have also proven that ΔfbpA is more protective in mice than BCG against virulent aerosol challenge with Mtb. This study addresses the mechanisms of protection observed with ΔfbpA by phenotyping responding T cells. We first evaluated the ability of dendritic cells to present the mycobacteria to naïve T cells, an in vitro mock of primary immunization. We also measured the response of primed T cells to macrophage-presented mycobacteria to interpret the possible response of a vaccinated host to a boost. We concluded that ΔfbpA can elicit a stronger Th1 response compared to BCG in vitro, and further observed that this enhanced response is at least partly due to the presence of proteins encoded by a region of the genome absent in all strains of BCG. Finally, we observed this heightened Th1 response in the mouse model after primary vaccination and a virulent aerosol challenge. The cytolytic T cell response was also measured after virulent challenge and was found to be superior in the ΔfbpA-treated group when compared to the BCG group. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Germ cell development is a highly coordinated process driven, in part, by regulatory mechanisms that control gene expression. Not only transcription, but also translation, is under regulatory control to direct proper germ cell development. In this dissertation, I have focused on two regulators of germ cell development. One is the homeobox protein RHOX10, which has the potential to be both a transcriptional and translational regulator in mouse male germ cell development. The other is the RNA-binding protein, Hermes, which functions as a translational regulator in Xenopus laevis female germ cell development. ^ Rhox10 is a member of reproductive homeobox gene X-(linked (Rhox) gene cluster, of which expression is developmentally regulated in developing mouse testes. To identify the cell types and developmental stages in which Rhox10 might function, I characterized its temporal and spatial expression pattern in mouse embryonic, neonatal, and adult tissues. Among other things, this analysis revealed that both the level and the subcellular localization of RHOX10 are regulated during germ cell development. To understand the role of Rhox10 in germ cell development, I generated transgenic mice expressing an artificial microRNA (miRNA) targeting Rhox10. While this artificial miRNA robustly downregulated RHOX10 protein expression in vitro, it did not significantly reduce RHOX10 expression in vivo. So I next elected to knockdown RHOX10 levels in spermatogonial stem cells (SSCs), which I found highly express both Rhox10 mRNA and RHOX10 protein. Using a recently developed in vitro culture system for SSCs combined with a short-hairpin RNA (shRNA) approach, I strongly depleted RHOX10 expression in SSCs. These RHOX10-depleted cells exhibited a defect in the ability to form stem cell clusters in vitro. Expression profiling analysis revealed many genes regulated by Rhox10, including many meiotic genes, which could be downstream of Rhox10 in a molecular pathway that controls SSC differentiation. ^ RNA recognition motif (RRM) containing protein, Hermes is localized in germ plasm, where dormant mRNAs are also located, of Xenopus oocytes, which implicates its role in translational regulator. To understand the function of Hermes in oocyte meiosis, I used a morpholino oligonucleotide (MO) based knockdown approach. Microinjection of Hermes MO into fully grown oocytes, which are arrested in meiotic prophase, caused acceleration of oocytes reentry into meiosis (i.e., maturation) upon progesterone induction. Using a candidate approach, I identified at least three targets of Hermes: Ringo/Spy, Xcat2, and Mos. Ringo/Spy and Mos are known to have functions in oocyte maturation, while Ringo/Spy, Xcat2 mRNA are localized in the germ plasm of oocytes, which drives germ cell specification after fertilization. This led me to propose that Hermes functions in both oocyte maturation and germ cell development through its ability to regulate 3 crucial target mRNAs. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MEKK3, a member of the MAP3K family, is involved in regulating multiple MAPK and NF-κB pathways. The MAPK and NF-κB signaling pathways are important in regulating T cell functions. MEKK3 is expressed through the development of T cell and also in subsets of T cell in the peripheral. However, the specific role of MEKK3 in T cell function is unknown. To reveal the in vivo function of MEKK3 in T cells, I have generated MEKK3 T cell conditional knock-out mice. Despite a normal thymus development in the conditional knock-out mice, I observed a decrease in the number of peripheral T-cells and impaired T-cell function in response to antigen stimulation. T cells undergo homeostatic proliferation under lymphopenia condition, a process called lymphopenia-induced proliferation (LIP). Using a LIP model, I demonstrated that the reduction of peripheral T cell number is largely due to a severe impairment of the self-antigen/MHC mediated T cell homeostasis. Upon anti-CD3 stimulation, the proliferation of MEKK3-deficient T cell is not significantly affected, but the production of IFNγ by naïve and effector CD4 T cells are markedly decreased. Interestingly, the IL-12/IL-18 driven IFNγ production and MAPK activation in MEKK3-deficient T cells is not affected, suggesting that MEKK3 selectively mediates the TCR induced MAPK signaling. Furthermore, I found that MEKK3 is activated by TCR stimulation in a RAC1/2 dependent manner, but not by IL-12/IL-18 stimulation. Finally, I showed that basal level of ERK and JNK activation is defective under LIP condition. I showed that the TCR induced ERK, JNK and p38 MAPK activation is also defective in MEKK3 deficient CD4 T cells. Taken together, my data demonstrate a crucial role of MEKK3 in T cell homeostasis and IFNγ production through regulating the TCR mediated MAPK pathway. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately 200,000 African children are born with sickle-cell anemia each year. Research has shown that individuals with hemoglobin disorders, particularly sickle-cell anemia, have increased susceptibility to contracting malaria. Currently it is recommended that patients diagnosed with sickle-cell anemia undergo malaria chemoprophylaxis in order to decrease their chances of malarial infection. However, studies have shown that routine administration of these drugs increases the risk of drug resistance and could possibly impair the development of naturally acquired immunity. Clinical trials have shown intermittent preventive treatment (IPT) to be an effective method of protection against malaria. The objective of this report was to review previously conducted clinical trials that study the effects of intermittent preventive treatment on malaria and anemia in infants and children. Based on the review, implications for its appropriateness as a protective measure against malaria for infants and children diagnosed with sickle-cell disease were provided.^ The 18 studies reviewed were randomized controlled trials that focused on IPT’s effect on malaria (7 studies), anemia (1 study), or both (8 studies). In addition to these 16, one study looks at IPT’s effect on molecular resistance to malaria, and another study is a follow-up to a study in order to review IPT’s potential to cause a rebound effect. The 18 th study in this review specifically looks at IPT’s protective efficacy in children with SCA. The studies in this report were restricted to randomized controlled trials that have been performed from 2000 to 2010. Reports on anemia were included to illustrate possible added benefits of the use of IPT specific to burdens associated with SCA other than malaria susceptibility. The outcomes of these studies address several issues of concern involving the administration of IPT: protective efficacy (in reference to age, seasonal versus perennial malaria regions, and overall effectiveness against malaria and anemia), drug resistance, drug rebound effect, drug side-effects, and long-term effects. Overall, these showed that IPT has a significant level of protective efficacy against malaria and/or anemia in children. More specifically, the IPT study evaluating children diagnosed with sickle-cell anemia proved IPT to be a more effective method of protection than traditional chemoprophylaxis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinoids have been found to be effective in the prevention of premalignant lesions and second primary cancers in the upper aerodigestive tract. Further development of retinoids for prevention and therapy of head and neck squamous cell carcinoma (HNSCC) requires a better understanding of their mechanism of action on the growth and differentiation of such cells. I have chosen to employ cultured HNSCC cell lines as a model system for investigating the mechanism underlying the effects of retinoids. These cells are useful because all-trans retinoic acid (ATRA) inhibits their proliferation. Furthermore, two HNSCC cell lines were found to express three squamous differentiation (SqD) markers characteristic of normal keratinocytes and ATRA suppressed the expression of these markers as reported for normal keratinocytes. It is thought that nuclear retinoic acid receptors (RARs and RXRs), which act as DNA-binding transcription modulating factors, mediate the effects of retinoids on the growth and differentiation of normal and tumor cells. I found that all four cell lines examined expressed RAR-$\alpha ,$ RAR-$\tau ,$ and RXR-$\alpha$ and three of four expressed RAR-$\beta .$ ATRA treatment increased the level of RAR-$\alpha ,$ -$\beta ,$ and -$\tau$ in four cell lines. Two HNSCC cell lines that exhibited a progressive increase in the expression of SqD markers during growth in culture also showed a concurrent decrease in RAR-$\beta$ level. Moreover, increasing concentrations of RA suppressed the SqD marker while inducing RAR-$\beta$ mRNA. Several synthetic retinoids which exhibit a preference for binding to specific nuclear RARs showed a differential ability to inhibit cell proliferation, transactivate transcription of the reporter genes (CAT and luciferase) from the RA response element (RARE) of the RAR-$\beta$ gene, and induce RAR-$\beta$ expression. Those retinoids that were effective inducers of RAR-$\beta$ also suppressed SqD effectively, indicating an inverse relationship exists between the expression of RAR-$\beta$ and SqD. This inverse relationship suggests a role for RAR-$\beta$ in the suppression of SqD. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic toxicity was evaluated in Sprague-Dawley (SD) rats and A-strain mice exposed to HCHO inhalation at 0, 0.5, 3, or 15 ppm for six hours/day, five days/week for up to 24 weeks. Toxicity was measured by flow cytometry to detect changes in cell cycle RNA and DNA content and by alkaline elution to detect DNA protein cross-link (DPC) formation.^ A G(,2)M block was detected in SD rat marrow following one week of exposure to 0.5, 3, or 15 ppm HCHO, but this block did not persist. No effect was noticed in mouse marrow. Only a minimal increase in RNA content was detected in rat or mouse marrow while exfoliated lung cells showed a significant increase in RNA activity after one week of exposure.^ Acute exposure in SD rats for four hours/day for one or three days at 150 ppm showed an increase in RNA activity in exfoliated lung cells but not in the marrow after one day. On the third day, dead cells were detected in exfoliated lung cells.^ In alkaline elution studies, no DPC were detected in marrow of SD rats after 24 weeks exposure up to 15 ppm. During acute exposures, a dose response relationship was detected in SD rat exfoliated lung cells which yielded cross-linking factors of 0.954, 1.237, and 1.417 following a four hour exposure to 15, 50, or 150 ppm, respectively. No DPC were detected in the marrow at 150 ppm. In vitro exposures to HCHO of CHO and SHE cells and rat marrow cells revealed the production of DPC and DNA-DNA cross-links.^ Cytoxan treatment of SD rats was used to provide positive controls for flow cytometry and alkaline elution. A drastic reduction in RNA content and cycling cells occurred one day following treatment. After four days, RNA content was greatly increased; and on day eleven the marrow had regenerated. DPCs were detected in both the marrow and the exfoliated lung cells.^ The lack of significant responses in SD rats and A-strain mice below 15 ppm HCHO is explainable by host defense mechanisms. Apparently, the mucociliary apparatus and enzymatic detoxification are sufficient to reduce systemic toxicity to low level concentrations of formaldehyde. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of vitamin A (retinyl acetate) and three hypoxic cell sensitizers (metronidazole, misonidazole and desmethylmisonidazole) on lung tumor development in strain A mice exposed to radiation was assessed.^ In experiments involving vitamin A, two groups of mice were fed a low vitamin A diet (< 100 IU/100g diet) while the two other groups were fed a high vitamin A diet (800 IU/100g diet). After two weeks one group maintained on the high vitamin A diet and one group maintained on the low vitamin A diet were given an acute dose of 500 rad of gamma radiation to the thoracic region. The circulating level of plasma vitamin A in all four groups of mice was monitored. A difference in circulating vitamin A in the mice maintained on high and low vitamin A diet became evident by 20 weeks and continued for the duration of the experiment. Mice were killed 18, 26, and 40 weeks post irradiation, their lungs were removed and the number of surface adenomas were counted. There was a significant increase in the number of mice bearing lung tumors and the mean number of lung tumors per mouse in the irradiated group maintained on the high vitamin A diet at 40 weeks post irradiation as compared to the irradiated group maintained on a low vitamin A diet (p < 0.05). Under the conditions of this experiment the development of pulmonary adenomas in irradiated strain A mice appears to relate directly to circulating levels of vitamin A.^ In the other experiment two dose levels of the hypoxic cell sensitizers, 0.2mg/g and 0.6mg/g, were used either alone or in combination with 900 rad of gamma radiation in a fractionated dose schedule of twice a week for three weeks. In the groups of mice which received hypoxic cell sensitizers only, the prevalence and the mean number of lung tumors per mouse were somewhat increased (p < 0.10) in the higher dose group (0.6mg/g) of misonidazole but was not significantly different from the control animals in the other two sensitizer groups. The combination of hypoxic cell sensitizer and radiation did not show any significant enhancement of lung tumor response when compared with the group which received radiation only. The dose of radiation used in this study significantly enhanced lung tumor formation in mice when compared with the control group. Thus, under the experimental exposure conditions used in this investigation, which were very similar to the exposure conditions occurring in clinical treatment, all three hypoxic cell sensitizers did not sensitize the mouse to the carcinogenic effects of gamma radiation.^