958 resultados para pollen germination
Resumo:
Although the climate development over the Holocene in the Northern Hemisphere is well known, palaeolimnological climate reconstructions reveal spatiotemporal variability in northern Eurasia. Here we present a multi-proxy study from north-eastern Siberia combining sediment geochemistry, and diatom and pollen data from lake-sediment cores covering the last 38,000 cal. years. Our results show major changes in pyrite content and fragilarioid diatom species distributions, indicating prolonged seasonal lake-ice cover between ~13,500 and ~8,900 cal. years BP and possibly during the 8,200 cal. years BP cold event. A pollen-based climate reconstruction generated a mean July temperature of 17.8°C during the Holocene Thermal Maximum (HTM) between ~8,900 and ~4,500 cal. years BP. Naviculoid diatoms appear in the late Holocene indicating a shortening of the seasonal ice cover that continues today. Our results reveal a strong correlation between the applied terrestrial and aquatic indicators and natural seasonal climate dynamics in the Holocene. Planktonic diatoms show a strong response to changes in the lake ecosystem due to recent climate warming in the Anthropocene. We assess other palaeolimnological studies to infer the spatiotemporal pattern of the HTM and affirm that the timing of its onset, a difference of up to 3,000 years from north to south, can be well explained by climatic teleconnections. The westerlies brought cold air to this part of Siberia until the Laurentide ice-sheet vanished 7,000 years ago. The apparent delayed ending of the HTM in the central Siberian record can be ascribed to the exceedance of ecological thresholds trailing behind increases in winter temperatures and decreases in contrast in insolation between seasons during the mid to late Holocene as well as lacking differentiation between summer and winter trends in paleolimnological reconstructions.
Resumo:
(of book) Problems of origin of the hydrosphere, history of formation and development of underground water, of the World Ocean, lakes, rivers, surface and subsurface ice are under consideration in the book. An attempt of the complete reconstruction of the continental hydrosphere in the Eastern Europe in Late Pleistocene is made. Methods of paleohydrologic studies are described. Some papers are devoted to paleoclimatic problems of river runoff formation and paleotermic evolution of continental glaciers.
Resumo:
Pliocene vegetation dynamics and climate variability in West Africa have been investigated through pollen and XRF-scanning records obtained from sediment cores of ODP Site 659 (18°N, 21°W). The comparison between total pollen accumulation rates and Ti/Ca ratios, which is strongly correlated with the dust input at the site, showed elevated aeolian transport of pollen during dusty periods. Comparison of the pollen records of ODP Site 659 and the nearby Site 658 resulted in a robust reconstruction of West African vegetation change since the Late Pliocene. Between 3.6 and 3.0 Ma the savannah in West Africa differed in composition from its modern counterpart and was richer in Asteraceae, in particular of the Tribus Cichorieae. Between 3.24 and 3.20 Ma a stable wet period is inferred from the Fe/K ratios, which could stand for a narrower and better specified mid-Pliocene (mid-Piacenzian) warm time slice. The northward extension of woodland and savannah, albeit fluctuating, was generally greater in the Pliocene. NE trade wind vigour increased intermittently around 2.7 and 2.6 Ma, and more or less permanently since 2.5 Ma, as inferred from increased pollen concentrations of trade wind indicators (Ephedra, Artemisia, Pinus). Our findings link the NE trade wind development with the intensification of the Northern Hemisphere glaciations (iNHG). Prior to the iNHG, little or no systematic relation could be found between sea surface temperatures of the North Atlantic with aridity and dust in West Africa.
Resumo:
We provide new information on changes in tundra plant sexual reproduction in response to long-term (12 years) experimental warming in the High Arctic. Open-top chambers (OTCs) were used to increase growing season temperatures by 1-2 °C across a range of vascular plant communities. The warming enhanced reproductive effort and success in most species; shrubs and graminoids appeared to be more responsive than forbs. We found that the measured effects of warming on sexual reproduction were more consistently positive and to a greater degree in polar oasis compared with polar semidesert vascular plant communities. Our findings support predictions that long-term warming in the High Arctic will likely enhance sexual reproduction in tundra plants, which could lead to an increase in plant cover. Greater abundance of vegetation has implications for primary consumers - via increased forage availability, and the global carbon budget - as a function of changes in permafrost and vegetation acting as a carbon sink. Enhanced sexual reproduction in Arctic vascular plants may lead to increased genetic variability of offspring, and consequently improved chances of survival in a changing environment. Our findings also indicate that with future warming, polar oases may play an important role as a seed source to the surrounding polar desert landscape.
Resumo:
Two marshes near Muscotah and Arrington, Atchison County, northeastern Kansas, yielded a pollen sequence covering the last 25,000 yrs of vegetation development. The earliest pollen spectra are comparable with surface pollen spectra from southern Saskatchewan and southeastern Manitoba and might indicate a rather open vegetation but with some pine, spruce, and birch as the most important tree species, with local stands of alder and willow. This type of vegetation changed about 23,000 yrs ago to a spruce forest, which prevailed in the region until at least 15,000 yrs ago. Because of a hiatus, the vegetation changes resulting in the spread of a mixed deciduous forest and prairie, which was present in the region from 11,000 to 9,000 yrs ago, remain unknown. Prairie vegetation, with perhaps a few trees along the valleys, covered the region until about 5,000 yrs ago, when a re-expansion of deciduous trees began in the lowlands.
Resumo:
Als im Frühsommer 1949 die ersten Pferdeschädel und Hundeknochen als Streufunde aus dem Barsbeker Moor bekannt wurden, war es wünschenswert, mit Hilfe der Pollenanalyse eine zeitliche Zuordnung zu versuchen. Auf diese Weise konnte unter Umständen wieder ein prähistorischer Horizont pollenanalytisch fixiert werden, da u.a. auch datierbare Keramikreste aus der römischen Kaiserzeit gefunden wurden. Die Analyse des aus der Stirnhöhle zweier Pferdeschädel entnommenen Materials ergab die beiden obersten in der Tabelle verzeichneten Pollenspektren. Bei der Untersuchung fiel auf, daß das Einschlußmaterial der Funde stark feinsandig und etwas tonig war. Auch der Finder gab an, daß die Knochen dem Sand, bis zu dem der Torfabbau niedergetrieben wurde, unmittelbar auflagen. Eine Bohrung, die am Westende des Torfstiches niedergebracht wurde, zeigte ebenfalls diese Zwischenschicht als deutliche Sandeinschwemmung. Diese wird noch einmal von grobdetritischen Flachwasser-Ablagerungen unterlagert.
Resumo:
This study reconstructs middle and late Holocene vegetation and climate dynamics in the Oshima Peninsula, SW Hokkaido, using the published method of biome reconstruction and modern analogue technique applied to the Yakumo pollen record (42°17'03''N, 140°15'34''E) spanning the last 5500 years. Two previously published matrices assigning Japanese plant/pollen taxa to the major vegetation types (biomes) are tested using a newly compiled dataset of 78 surface pollen spectra from Hokkaido. With both matrices showing strengths and weaknesses in reconstructing cool mixed and temperate deciduous forests of Hokkaido, the results suggest the necessity to consider the whole list of identified terrestrial pollen taxa for generating robust vegetation reconstructions for northern Japan. Applied to the fossil pollen data, both biome-reconstruction approaches demonstrate consistently that oak-dominated cool mixed forest spread in the study region between 5.5 and 3.6 cal ka BP and was subsequently replaced by beech-dominated temperate deciduous forest. The pollen-based climate reconstruction suggests this change in the vegetation composition was caused by a shift from cooler and drier than present climate to warmer and wetter, similar to modern conditions about 3.6 cal ka BP. Comparing the pollen-based reconstruction results with the published marine records from the NW Pacific, the reconstructed vegetation and climate dynamics can be satisfactorily explained by the greater role played by the warm Tsushima Current in the Sea of Japan and in the Tsugaru Strait during the middle and late Holocene. An increase in sea surface temperatures west and south of the study site would favour air temperature rise and moisture uptake and cause an increase in precipitation and snow accumulation in the western part of Hokkaido during the late Holocene.
Resumo:
Preliminary analyses of 56 samples from the upper 49 meters of Hole 480 (Cores 1-11) show marked changes in pollen frequencies and concentrations. The largely varved cores (1, 2, 3, 10, and 11) are characterized by low concentrations and pollen types such as Gramineae, Low-spine Compositae and Cheno/Ams. The largely homogeneous section (Cores 3 through 10) contains higher pollen concentrations and is dominated by TCT (probably Juniperus) and Artemisia. Picea pollen is also present in this section. The record as a whole is thought to represent most of the last glacial cycle.
Resumo:
A preliminary palynological survey of 118 samples from the Mississippi Fan (Sites 615, 616, and 620) and from 2 intraslope basins (Sites 619 and 618) shows pollen in all samples. Reworked pollen is generally abundant, forming over 50% of the sum of pollen and reworked pollen. Concentration of nonreworked pollen is usually low (on the order of tens to hundreds of pollen grains per cubic centimeter wet sediment). Conifers, primarily Pinus, Picea, and Tsuga, dominate Pleistocene marine pollen spectra; significant percentages of Quercus are present in Holocene sediments and in sediments deposited during oxygen-isotope Stage 5.
Resumo:
Beringian climate and environmental history are poorly characterized at its easternmost edge. Lake sediments from the northern Yukon Territory have recorded sedimentation, vegetation, summer temperature and precipitation changes since ~16 cal ka BP. Herb-dominated tundra persisted until ~14.7 cal ka BP with mean July air temperatures less than or equal to 5 °C colder and annual precipitation 50 to 120 mm lower than today. Temperatures rapidly increased during the Bølling/Allerød interstadial towards modern conditions, favoring establishment of Betula-Salix shrub tundra. Pollen-inferred temperature reconstructions recorded a pronounced Younger Dryas stadial in east Beringia with a temperature drop of ~1.5 °C (~2.5 to 3.0 °C below modern conditions) and low net precipitation (90 to 170 mm) but show little evidence of an early Holocene thermal maximum in the pollen record. Sustained low net precipitation and increased evaporation during early Holocene warming suggest a moisture-limited spread of vegetation and an obscured summer temperature maximum. Northern Yukon Holocene moisture availability increased in response to a retreating Laurentide Ice Sheet, postglacial sea level rise, and decreasing summer insolation that in turn led to establishment of Alnus-Betula shrub tundra from ~5 cal ka BP until present, and conversion of a continental climate into a coastal-maritime climate near the Beaufort Sea.